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1. Executive Summary 

The report provides information on the degree of implementation of Aquaculture 4.0 in the European 

aquaculture production sector. It includes a scientific review of the technological areas that make 

up Aquaculture 4.0.  

New technologies were classified into different groups. 

A survey about the implementation of these new technologies was addressed to aquaculture 

producers in different countries. 

With the results of this survey, the consortium will be able to face the next tasks and prepare contents 

related with Aquaculture 4.0 for Vocational Training.  

The report highlights the challenges facing companies in adopting new technologies and provides 

a recommended bibliography and survey results in the appendices. 

The work carried out will be helpful to impulse the aquaculture sector into the future and to prepare 

it to face the important challenges that are awaiting  
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2. Detailed report on the deliverable  

2.1. Background/Introduction 

This report is the deliverable for T2.1. “Degree of implementation of the different technological areas 

that make up Aquaculture 4.0 in the European aquaculture production sector and the needs and 

demands of companies for the coming years in this technological field”. The task T2.1 is part of the 

work carried out in the WP2 of the Project “Approach to digitisation, collection of good practices 

and training programmes of the aquaculture sector to be digitized”. 

The main objectives of this WP2 are: 

- To study the degree of implementation of the different technological areas that make up 

Aquaculture 4.0 in the European aquaculture production sector and the needs and 

demands of companies for the coming years in this technological field.  

- To draw up a new structure for the training course, defining priorities and dissemination 

activities. 

- To identify the topics where digitisation will be most appropriate. 

- To evaluate the reinforcement of business opportunities using advanced digital tools  

- To identify the needs and opportunities for Vocational Training, detecting meeting points with 

Producers' Associations and transferring possibilities for an official Curriculum at European 

level. 

2.2. Description of work 

The work has been led by the UCH-CEU, and in collaboration with UAlg, UNIBO, RTEU, MARE and 

CCMAR has carried out a research on the level of implementation of new technologies in the partner 

countries.  

The parts of the job developed have been: 

- Scientific documentary research, analysis of reports from public bodies on the subject of 

study. 

- Preparation of a specific questionnaire to be sent by the partners to their associates. 

- Collection and analysis of data. 

- Preparation of a report on results.  

E-SCH.EG has worked on the design of the questionnaires, and the Business associations API, APA 

and AMA distributed it to their members. 
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2.2.1. Scientific review 

2.2.1.1. Introduction 

Aquaculture in the EU and worldwide 

According to the Food and Agriculture Organisation of the United Nations (FAO), global production 

of aquatic resources in 2021 totaled 218 million tons, representing an increase of 2.0 % compared to 

the previous year, 2020. Extractive fisheries contributed 92 million tons, representing 42.3 % of the total, 

while aquaculture contributed 126 million tons, equivalent to the remaining 57.7 %. (APROMAR, 2022). 

It is important to note that since 2017, the production of aquatic resources has maintained a constant 

level above 200 million tons. In the same year, an increase in production volume of 4.1 % was 

observed compared to the previous year, reaching 198.9 million tons in 2016 (APROMAR, 2022). 

The overall European aquaculture-based fish production for the year 2020 is estimated to reach 

2,570,650 tons. This figure suggests a modest increase of 2.8 % in total production compared to the 

previous year, 2019. Among this production, marine cold-water species make up the majority at 70 

%, freshwater species account for 14 %, and marine Mediterranean species constitute the remaining    

16 % (FEAP, 2022). 

Norway maintains its position as the leading European producer, contributing 58 % of the total output. 

Their primary contributions include salmon and sizeable trout production (over 1.2 kg). Other nations 

that annually produce over 100,000 tons include Turkey, the United Kingdom, and Greece. The 

primary species in production are salmon, trout, seabream, seabass, and carp, collectively 

accounting for 95 % of Europe's total production in 2020 (FEAP, 2022). 

The European Union (EU-27) emerges as the leading and most prominent global market for aquatic 

products. In 2022, per capita consumption of aquatic products in the EU stood at 21.1 kilograms in 

terms of whole fish, in contrast to the 22.6 kilograms recorded in 2021, representing a 7.1% decrease 

from the previous year, according to AIPCE reports (APROMAR, 2022). 

During 2022, the EU (27) produced a total of 4.6 million tons of aquatic products, combining fishing 

and aquaculture. Of this figure, 2.1 million tons were exported, and 1.1 million tons went to non-food 

uses. In addition, 8.55 million tons of aquatic products were imported and 2.2 million tons were 

exported, meaning that the total supply for consumption reached 9.4 million tons in 2022. As a result, 

the self-sufficiency rate stood at 33 % (APROMAR, 2022). 

In the same year, dependence on imported aquatic products reached 67%, mainly due to a 

decrease in catches from extractive fisheries. The average apparent per capita consumption of 
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aquatic products in the EU (27) was 23.3 kg (live weight) per person per year in 2020, which marked 

a decrease of 7 % compared to the previous year (APROMAR, 2022). 

Challenges for the European aquaculture sector 

As all other sectors, the livestock industry faces different challenges such as animal health and 

welfare, the environmental impact, ensuring the safety and quality of food products, and addressing 

the issue of zoonotic diseases. Additionally, there is an increasing demand for animal products, while 

the number of farmers is declining. This has resulted in much bigger herds per farmer, making it difficult 

to manage the farms, and the appearance of diseases. (Berckmans, 2017). 

The aquaculture industry faces problems such as labor-intensiveness, environmental pollution, 

diseases, and lack of traceability of products. These limitations can be addressed by using modern 

types of technologies, such as Industry 4.0-based smart systems, to achieve sustainable and 

profitable production (Biazi & Marques, 2023). 

Some authors highlight the critical issue of incorporating the costs of environmental goods and 

services into aquaculture production economics. Most aquaculture systems rely on low-cost or no 

cost environmental resources, and addressing this challenge is crucial for the future sustainability of 

the sector (Bostock et al., 2010; C. Wang et al., 2021). 

Disease management is also a significant challenge in aquaculture. The impact of salmon lice on 

both wild salmonids and salmon aquaculture is discussed, emphasizing the need to identify effective 

candidates for commercial vaccines to mitigate the effects of these parasites (Torrissen et al., 2013; 

C. Wang et al., 2021). 

Technological advancements play a crucial role in addressing the challenges of the aquaculture 

sector. Genome editing can improve aquaculture breeding and production. This technology offers 

opportunities for enhancing traits related to disease resistance, growth, and environmental 

adaptation in farmed fish (Gratacap et al., 2019). 

What is the Aquaculture 4.0 

To give a solution to the challenges faced by the livestock industry, the Precision Livestock Farming 

provides some solutions to help monitor animal health and welfare by providing real-time data on 

individual animals, allowing farmers to detect and treat health issues early. This approach can also 

help reduce the environmental impact by optimizing feed and water usage, reducing emissions, and 

improving manure management. Additionally, can help ensure the safety and quality of food 

products by providing traceability and transparency throughout the supply chain. Finally, PLF 
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technology can help address the issue of zoonotic diseases by providing early detection and 

prevention measures (Berckmans, 2017). 

Precision Livestock Farming provides real time monitoring and management systems for farmers. This 

approach is different from other approaches that rely on human experts scoring animal-based 

indicators. The main aim of this technology is the early detection of problems and the immediate 

management action to improve animal welfare and productivity (Berckmans, 2017). 

The Precision Livestock Farming requires the application of different expert areas such as animal 

science, engineering, computer science, and data analytics. This interdisciplinary team, working 

together, can develop and implement these technologies to improve the animal production 

(Berckmans, 2017). 

Aquaculture 4.0, also known as precision aquaculture, is the application of Fourth Industrial 

Revolution technologies to the aquaculture field. These technologies encompass artificial 

intelligence, big data analytics, machine learning, computer vision, and automation. Their 

integration is aimed at enhancing the efficiency, productivity, and sustainability of aquaculture 

operations (Mustafa et al., 2021).  

Precision aquaculture is a vital element within the aquaculture industry, playing a key role in its 

progression and long-term sustainability. It involves the adoption of cutting-edge technologies, data-

driven approaches, and innovative methods to optimize production, enhance efficiency, and 

mitigate environmental impacts (O’Donncha & Grant, 2020). 

The concept of " replacing human with machine " finds application in the realm of intelligent fish 

farming, where modern technology is harnessed to automate functions like oxygen enhancement, 

feeding optimization, disease prevention, and precise harvesting. This automation enables precise 

and efficient operations, liberating human power entirely while fostering environmentally-friendly and 

sustainable aquaculture practices. The incorporation of intelligent digital technologies, agricultural 

robots, IoT, edge computing, 5G, and artificial intelligence algorithms can collectively advance the 

field of intelligent fish farming. The ultimate objective is to establish fully autonomous, unmanned fish 

farms that rely on cutting-edge technology for their operation. (C. Wang et al., 2021). 

One of the key areas where Aquaculture 4.0 can make a significant impact is in disease 

management. The use of emerging diagnostic technologies, such as deep learning and computer 

vision, can enhance disease detection and monitoring in aquaculture systems. These technologies 

enable early detection of diseases, allowing for timely intervention and prevention of disease 

outbreaks (Dong et al., 2023). 
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Another important aspect of Aquaculture 4.0 is the use of smart aquaculture systems. These systems 

leverage machine learning and computer vision to optimize various aspects of aquaculture 

operations, including live fish identification, species classification, behavioral analysis, feeding 

decisions, and water quality prediction. By automating and optimizing these processes, smart 

aquaculture systems can improve production efficiency and reduce environmental impacts (Vo et 

al., 2021; Yang et al., 2021). 

Furthermore, Aquaculture 4.0 can contribute to the sustainable development of the aquaculture 

industry. The integration of its technologies can enable precise and data-driven management of 

aquaculture systems, leading to better resource utilization and reduced environmental impacts. For 

example, by using big data analytics and predictive modeling, aquaculture operators can optimize 

feed formulation and feeding strategies, minimizing waste and improving feed conversion efficiency 

(Mustafa et al., 2021). 

In addition, Aquaculture 4.0 can facilitate the expansion of aquaculture into new areas, such as 

offshore environments. Smart spatial planning, supported by advanced technologies, can mitigate 

potential negative effects of offshore aquaculture and ensure sustainable development. By 

optimizing the use of space and minimizing environmental impacts, offshore aquaculture can unlock 

untapped potential for seafood production. 

Overall, Aquaculture 4.0 represents a paradigm shift in the aquaculture industry, leveraging 

advanced technologies to enhance productivity, sustainability, and resilience. By integrating Fourth 

Industrial Revolution technologies into aquaculture operations, the sector will address key challenges 

and unlock new opportunities for the future of aquaculture. 

2.2.1.2. Objectives 

The aim of the review are: 

- To perform a systematic review of the scientific about the aquaculture 4.0 technologies. 

- To prepare a survey to collect data about the level of implementation of aquaculture 4.0 

technologies in the countries participating in the project. 

- To analyze the data collected from the survey. 
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2.2.1.3. Material and methods 

Different sources of information were used: Pubmed, Google Scholar, ResearchGate. 

The first step was to look for articles with the keywords “Aquaculture 4.0”, “Precision aquaculture” 

and “Smart aquaculture”, prioritising those articles that are a bibliographical review. Articles about 

precision farming or precision livestock were also reviewed. 

From these articles, a selection of the main technologies related to aquaculture 4.0 was made. 

The keywords used were: aquaculture, 4.0, precision, smart, IoT (Internet of Things), robotics, UAV, 

ROV, blockchain, intelligent sensing and combinations. Table 1 shows the results of the different 

keywords used in Pubmed, that is the most widely used search engine for scientific knowledge. 

Table 1. Keywords used and results obtained in PubMed. 

Keywords Pubmed 

Aquaculture + 4.0 317 

Aquaculture + precision 586 

Aquaculture + smart 153 

Aquaculture + IoT 25 

Aquaculture + robotics 28 

Aquaculture + UAV 8 

Aquaculture + ROV 10 

Aquaculture + blockchain 3 

Aquaculture + intelligent sensing 15 

The abstracts of the articles obtained were read, selecting those that were directly related to the 

topic under study. Many of the articles found, for example in the search for "Aquaculture+4.0" gave 

results that had nothing to do with the topic of the study. 

In addition, the cited references in the reviewed articles were checked, checking those articles that 

were not included in the initial review. 

The European Commission website was also used to search for Horizon 2020 projects related to 

aquaculture. It was filtered by the term "Aquaculture", obtaining a total of 362 projects. The 

information on these projects was reviewed, selecting those related to aquaculture 4.0.  
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15 projects were selected for its relevance and relationship with this project: 

- Tools for Assessment and Planning of Aquaculture Sustainability. 

- Co-creating a decision support framework to ensure sustainable fish production in Europe 

under climate change 

- Intelligent Fish feeding through Integration of Enabling technologies and Circular principle. 

- Sustainable Farming for Effective Aquaculture. 

- High Resolution Copernicus-Based Information Services at Sea for Ports and Aquaculture. 

- New Technologies, Tools and Strategies for a Sustainable, Resilient and Innovative European 

Aquaculture. 

- Developing Innovative Market Orientated Prediction Toolbox to Strengthen the Economic 

Sustainability and Competitiveness of European Seafood on Local and Global markets. 

- Intelligent management system for integrated multi-trophic aquaculture. 

- Enabling Precision Aquaculture with multi-variable real-time sensing and Copernicus Earth 

Observation data. 

- Smart System for the Prevention of Biofouling on Aquaculture NETs by Ultrasonic Wave 

Technology. 

- Aquaculture Smart and Open Data Analytics as a Service. 

- The European first generation of aquaculture SERS-based Biosensor. 

- Development and evaluation of miniaturized biosensors for diagnosis of pathogens in 

aquaculture. 

- Continual Acoustic Based Multifunctional Cage Mounted Fish Estimator Deigned To Reduce 

Feed Waste, Fish Mortality, and Predator and Fish Escape Control. 

- ECO-INNOVATE-AQUACULTURE-SYSTEM. 

- Smart Feeding Systems for Hatcheries: Automatic central feeding system of live food and 

micro diets for farmed fingerlings. 
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In the case of these projects, the results obtained were reviewed and the related scientific articles 

were added. 

Over 200 documents were selected and studied, including articles, abstracts of conference papers, 

reports and projects information. The recommended bibliography can be found in the Appendices. 

 

2.2.1.4. Results of the scientific review 

There are many different technologies that can be applied to Aquaculture 4.0. We can distribute in 

different categories: 

- Internet of Things, 

- Robotics 

- Camera systems, 

- Support tools for decision making,  

- Modern sensing techniques, 

- Blockchain technology, 

 

Internet of Things (IoT) 

Aquaculture farms can benefit from various applications of the Internet of Things (IoT) technology. 

One important application is water quality monitoring. IoT-based systems can collect real-time data 

on parameters such as temperature, pH, dissolved oxygen, and nutrient levels in aquaculture 

systems. This data can be transmitted wirelessly to a central monitoring system, allowing farmers to 

continuously monitor and analyze the water quality. By detecting any deviations from optimal 

conditions, farmers can take timely actions to maintain a healthy environment for the aquatic 

organisms and prevent potential issues (H. R. Lim et al., 2022; L. W. K. Lim, 2023). 

Another application of IoT in aquaculture is fish monitoring. IoT-based devices can be used to track 

and monitor fish behavior, growth, and health parameters. These devices can collect data on factors 

such as feeding patterns, swimming activity, and water temperature preferences. By analyzing this 

data, farmers can gain insights into the well-being of the fish and make informed decisions regarding 

feeding regimes, disease prevention, and overall farm management (Tamim et al., 2022). 

IoT technology also plays a role in farm monitoring and management. Unmanned systems, such as 

drones and autonomous underwater vehicles, equipped with IoT sensors, can be used to monitor 
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aquaculture farms. These systems can capture aerial or underwater images, collect data on water 

quality, and even detect fish biomass. The collected data can provide valuable information for farm 

management, including optimizing feeding strategies, identifying areas of concern, and assessing 

the overall performance of the farm (Ubina & Cheng, 2022). 

Furthermore, precision aquaculture, enabled by IoT, involves the integration of various sensors and 

devices in aquaculture systems. These interconnected sensors can monitor parameters such as water 

quality, feeding behavior, and environmental conditions. The data collected from these sensors can 

be analyzed to optimize production processes, improve resource efficiency, and enhance overall 

farm performance (O’Donncha & Grant, 2020). 

The use of Global System for Mobile (GSM) is an interesting example of a technology that offers 

several benefits and applications to the aquaculture sector. 

Remote monitoring of plant and water quality parameters, as well as security systems for aquaculture 

facilities. GSM technology enables wireless communication and remote access, enhancing the 

efficiency and effectiveness of aquaculture operations (Jawad et al., 2017). 

The use of GSM technology has been used, linked with predictive models, to estimate the 

accumulation of taste taints in RAS-farmed fish, such as geosmin and MIB, based on environmental 

factors (Hathurusingha & Davey, 2014). 

Furthermore, the use of GSM technology can enable the design of smart biofloc monitoring and 

controlling systems using the Internet of Things (IoT). This allows farmers to remotely monitor and 

control parameters such as dissolved oxygen, pH, and nutrient levels in the biofloc system, optimizing 

the conditions for the growth of the cultured organisms (Crab et al., 2012; Tasnim et al., 2022). 

Aquaculture farms can benefit from both on-site and remote interfaces for various purposes. On-site 

interfaces allow for direct monitoring and control of the aquaculture system, while remote interfaces 

provide valuable information about water quality, site selection, and spatial-temporal distribution. 

The use of Arduino development environment can also be applied to aquaculture. This technology 

can also be combined with the use of GSM technology to monitor the aquaculture systems, 

connecting the circuits to sensors for monitoring parameters such as pH, temperature and humidity 

(Bakar et al., 2022). 

On-site interfaces enable real-time monitoring of those water parameters that need to be 

continuously monitored and controlled, such as dissolved oxygen, temperature, pH level, and 

turbidity, allowing farmers to make necessary adjustments to maintain the health and productivity of 

the aquaculture system (Su et al., 2020). 



 

15 of 76 

Remote sensing can also be used to monitor raft aquaculture areas, providing objective information 

about aquaculture development and land-use changes. It also can be used to study shellfish-

farming ecosystems and manage aquaculture operations (Cui et al., 2019; Gernez et al., 2017). 

Both on-site and remote interfaces can be combined. On-site interfaces allow for immediate 

response to changing conditions, while remote interfaces provide a broader perspective and 

objective information about the aquaculture system. For example, remote sensing data can be used 

to identify susceptible areas for aquaculture operations based on characteristics such as proximity 

to discharge, shallow depths, and slow currents. This information can inform the spatial planning of 

aquaculture farms, reducing the risk of negative impacts on the environment (Gentry et al., 2017). 

As it has been already stated, Water quality sensors are essential for maintaining optimal conditions 

for the growth and health of aquatic organisms, ensuring high productivity and quality in aquaculture 

operations (Kassem et al., 2021; X. G. Liu et al., 2021; Su et al., 2020; C. Wang et al., 2021). 

By continuously monitoring water quality, aquaculture farmers can take timely actions to address 

any issues and maintain optimal conditions. Water quality sensors provide valuable data that enables 

farmers to adjust feeding rates, manage aeration systems, optimize water exchange, and implement 

appropriate treatment strategies (Kassem et al., 2021; Su et al., 2020). 

Moreover, water quality sensors can contribute to sustainable aquaculture practices. They help 

minimize the environmental impact of aquaculture operations by preventing the release of excess 

nutrients and pollutants into surrounding water bodies. By monitoring water quality parameters, 

farmers can ensure that their practices align with regulatory standards and promote environmental 

stewardship (Kassem et al., 2021; Liu et al., 2021). 

The integration of water quality sensors with advanced technologies such as Internet of Things (IoT), 

artificial intelligence, and remote monitoring systems further enhances their effectiveness. These 

technologies enable real-time data collection, analysis, and remote access to water quality 

information, allowing farmers to make informed decisions and respond promptly to any changes or 

emergencies (Hassan et al., 2016; Kassem et al., 2021; Liang & Juang, 2022; Sun et al., 2023). 

In the aquaculture farms, the monitoring of the animal behavior es crucial. This can be done with Fish 

behavior sensors that provide valuable insights into the state and behavior of fish, allowing for 

improved profitability and reduced risks of disease and stress incidents (Hassan et al., 2016; Saberioon 

et al., 2017; Tamim et al., 2022; Ubina & Cheng, 2022). 

Machine vision systems have also been applied in aquaculture to monitor fish behavior. These 

systems utilize computer vision techniques to analyze fish movement and behavior patterns, 
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providing valuable information for fish health and welfare assessment. Also stereo-vision systems and 

other automated technologies can be used to monitor and manage health and welfare in 

aquaculture farms (Barreto et al., 2022; Saberioon et al., 2017). 

Cortisol stress response in fish can also be measured using sensors, providing insights into the impact 

of husbandry conditions on fish welfare. By monitoring stress levels, aquaculture operators can make 

informed decisions to optimize production and minimize stress-related issues (Pavlidis et al., 2013). 

By detecting unusual behaviors and identifying potential threats, early warning monitoring systems 

can provide valuable insights and enable prompt action to mitigate risks. These systems can also 

help prevent the spread of diseases and minimize economic losses (Biswas & Sakai, 2014; Yang et al., 

2021). 

By observing fish behavior, researchers can identify abnormal patterns that may indicate stress, 

disease, or other issues. This nondestructive method allows for continuous monitoring and provides 

an early warning of fish status (Yang et al., 2021). 

Different technologies (passive samplers or forecasting models) have been developed to predict the 

occurrence of toxic harmful algae providing valuable information for the shellfish aquaculture 

industry (Davidson et al., 2021; Fernandes-Salvador et al., 2021; Pizarro et al., 2013). 

Remote water quality monitoring systems with early warning capabilities have been developed for 

marine aquaculture. These systems utilize various communication media, such as email, SMS, and 

applications, to provide real-time information on water quality parameters, enabling prompt actions 

to be taken to maintain optimal conditions for fish health and growth (Pramana et al., 2021).  

 

Robotics 

Robotics has emerged as a valuable technology in the field of aquaculture, offering numerous 

benefits and applications. The use of robotics in aquaculture enables advancements in various 

areas, including fish locomotion, sensor payload development, underwater object detection, water 

quality monitoring, and automation(L. W. K. Lim, 2023). 

Different types of vehicles, such as ROV (Remotely Operated Vehicle) and AUV (Autonomous 

Underwater Vehicle) are both types of underwater robots used for various underwater tasks, but they 

differ in how they operate and their level of autonomy: 
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ROVs are typically connected to a surface vessel through a cable that provides power and 

communication. This allows operators to have direct control over the vehicle's movements and 

actions, making them suitable for tasks that require precise manipulation and intervention, such as 

underwater inspections, maintenance, and repairs. ROVs are commonly used in various applications, 

including offshore oil and gas exploration, scientific research, and aquaculture (Capocci et al., 

2017). 

In summary, ROVs are remotely operated, requiring a tether and human control, whereas AUVs 

operate autonomously, following pre-programmed instructions. The choice between the two 

depends on the specific tasks and objectives of the underwater mission. 

One significant application of robotics in aquaculture is the study of fish locomotion. Researchers 

have developed robotic platforms that mimic the swimming behavior of fish, allowing for a better 

understanding of their performance and kinematics. These platforms enable the exploration of the 

swimming capabilities of different fish species, which can inform the design of more efficient 

aquaculture systems (Zhu et al., 2019). 

Sensor payload development is another area where robotics plays a crucial role in aquaculture. The 

evolution of hybrid aerial underwater robotic systems (HAUCS) has enabled the integration of various 

sensors for data collection in aquaculture environments. These sensors can provide valuable 

information about water quality, temperature, pH levels, and dissolved oxygen content, allowing 

farmers to monitor and maintain optimal conditions for the cultured organisms (Den Ouden et al., 

2022). 

Underwater object detection is essential in aquaculture for automatically identifying and locating 

seafood. Robotics, combined with computer vision techniques, can facilitate the development of 

efficient and accurate underwater object detection systems. These systems can improve the 

efficiency and safety of fishing operations by automating the identification and tracking of aquatic 

organisms (Wu et al., 2022). 

Robotics can be used to develop lightweight and portable water quality detection robots hat collect 

real-time data on parameters such as temperature, pH value, and dissolved oxygen content (Huang 

et al., 2020).  

The use of cloud-based autonomous drones in aquaculture systems provides a cost-effective 

alternative to expensive surveillance systems and multiple fixed-camera installations. These drones 

can capture visual data and transmit it to cloud-based services, allowing for real-time monitoring 

(Ubina et al., 2021). 
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Automation is another significant benefit of robotics in aquaculture. Automation reduces the need 

for manual labor and enables continuous monitoring and control of essential parameters, leading to 

increased efficiency and productivity in aquaculture operations (Von Borstel et al., 2013). 

 

Camera systems-based applications and solutions. 

The use of cameras in aquaculture has been explored in different contexts, including feeding 

facilities, security systems, fish welfare, water quality monitoring, and spatial mapping of aquaculture 

facilities. 

For many years, surface camera systems have been used mainly for security purposes, both in marine 

and inland environments.  

The use of underwater video cameras has expanded in the last years, mainly for feeding purposes. 

Underwater cameras can also be used to monitor feeding activity and behavior in farming systems 

such as recirculating aquaculture systems. This allows farmers to assess the health and well-being of 

the fish, detect any abnormalities or signs of stress, and make informed decisions regarding feeding 

strategies and environmental conditions (Barreto et al., 2022). 

 However, the cameras and machine learning classification have demonstrated a big potential for 

addressing questions of marine animal behavior, distributions, and large-scale spatial patterns. 

Optical sensors and machine vision systems provide the possibility of developing faster, cheaper, and 

noninvasive methods for in-situ and after-harvesting monitoring of quality in aquaculture. Underwater 

cameras are also promising tools for detecting rare freshwater minnows (Bilodeau et al., 2022; Boom 

et al., 2014; Castañeda et al., 2020; Chang et al., 2022; Marini et al., 2018; Saberioon et al., 2017).  

Cameras can also be combined with other technologies to achieve other objectives. For monitoring 

water quality in aquaculture, can be used in combination with unmanned aerial vehicles (UAVs) 

equipped with cameras for dynamic inversion of inland aquaculture water quality. The images 

captured by the cameras are analyzed using spectral analysis techniques to rapidly monitor water 

quality parameters such as turbidity and chlorophyll concentration (C. Wang et al., 2021). 

Image processing techniques have become increasingly important in aquaculture for various 

applications, including fish detection, behavior analysis, water quality monitoring, and mapping of 

aquaculture areas. Several references provide insights into the use of image processing techniques 

in aquaculture: 
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Stereo-video camera systems have been employed for three-dimensional monitoring of fish in 

aquaculture farms. This system enables the assessment of fish behavior, growth, and overall health in 

a non-invasive manner, for example monitoring the Pacific bluefin tuna swimming freely in a net 

cage (Torisawa et al., 2011). 

In the context of spatial mapping, cameras, along with remote sensing technologies, can be utilized 

to map and monitor aquaculture facilities, combined with the use of object-based image analysis 

(OBIA) to extract coastal aquaculture areas from high-resolution imagery. This approach allows for 

accurate and periodic mapping of aquaculture facilities, supporting management and planning 

efforts (Fu et al., 2019). 

Image processing and analysis techniques can be applied for non-extractive and non-lethal data 

collection in fisheries. These techniques enable fish size measurement, catch estimation, regulatory 

compliance, species recognition, and population counting, providing valuable information for 

aquaculture management (G. Wang et al., 2019). 

Image processing can also be used for automatic counting methods in aquaculture farms. The 

advancements in sensor technology, computer vision, and acoustic technologies that have enabled 

efficient and accurate counting methods in aquaculture operations (H. Liu et al., 2023). 

Hyperspectral image processing has gained significant attention in aquaculture for various 

applications, including water quality monitoring, disease detection, and species classification. 

Several references provide insights into the use of hyperspectral image processing in aquaculture: 

Methods and algorithms used for analyzing hyperspectral data, including preprocessing, feature 

extraction, and classification techniques can improve the monitoring and management of 

aquaculture systems (Plaza et al., 2009). 

The use of remote sensing approaches, including hyperspectral imaging, has been used for 

monitoring mangrove species in aquaculture, allowing advancements in computer vision, pattern 

recognition, and artificial intelligence technologies that have improved the discrimination of 

mangrove species (Pham et al., 2019). 

The integration of image processing with computer vision technology techniques to enable 

automated and accurate diagnosis of fish diseases, which is crucial for disease management in 

aquaculture (Li et al., 2022). 

Machine vision systems, combined with optical sensors, offer non-invasive and cost-effective 

methods for monitoring the quality of aquaculture environments. The use of computer vision, sensor 
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networks, and robotics for animal and environmental monitoring is also important in precision 

aquaculture (Saberioon et al., 2017; Vecchio et al., 2023). 

Computer vision system can also be used for image processing techniques and linear models to 

measure fish length and predict body weight, providing a non-invasive and efficient method for 

assessing fish growth (Tonachella et al., 2022). 

Camera systems have become increasingly important in aquaculture, offering various applications 

and solutions. Deep learning techniques combined with optical sensors and machine vision have the 

potential to provide faster, cheaper, and noninvasive methods for in situ monitoring and post-

harvesting quality monitoring in aquaculture (Yang et al., 2021). This technology enables the 

development of systems that can accurately assess the health and condition of aquatic organisms, 

contributing to improved management practices. 

 

Support tools for decision making 

It is important for decision-makers in the aquaculture industry to have access to accurate and reliable 

information to inform their decision-making processes. Several studies have explored different 

aspects of support tools for decision making in aquaculture (Bostock et al., 2010; G. Kumar et al., 

2018). 

The use of seasonal forecasting for decision support in marine fisheries and aquaculture, highlighting 

the potential benefits of incorporating seasonal forecasts into decision-making processes (Hobday 

et al., 2016). 

Although not a current application in aquaculture, the example of the use the use of sensors in 

supporting health management on dairy farms can provide insights into the potential use of sensors 

in aquaculture decision-making (Rutten et al., 2013). 

The use of geospatial assessment for site suitability in aquaculture can provide insights into decision-

making processes related to site selection (Njoku et al., 2022). 

The importance of accurate and actionable information for decision-making plays an important role 

in the farmers’ response to weather and water-related stresses and manage climate risks (Hossain et 

al., 2021; U. Kumar et al., 2020). 

Cloud computing is a service that provides computer system resources, with a particular focus on 

data storage (cloud storage) and computing power, accessible on-demand without the need for 
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direct user management. In many cases, extensive networks of data centers, known as "large 

clouds," are spread across multiple locations. This infrastructure leverages resource sharing to ensure 

seamless operations and usually operates on a pay-as-you-go billing model. While this approach can 

minimize upfront capital costs, users should be mindful of potential unforeseen operating expenses. 

The integration of cloud computing, the Internet of Things (IoT), and artificial intelligence (AI) 

techniques, collectively known as CIA, holds great potential for sustainable aquaculture 

development. The use of intelligent sensors, camera systems, and automated or remotely controlled 

monitoring/feeding strategies can reduce labor intensity, improve farming operations, and enhance 

food security in the aquaculture sector (Mustapha et al., 2021). 

One relevant reference is the paper by Lecun et al. LeCun et al. (2015), which discusses deep 

learning, a subfield of machine learning that has shown remarkable success in image recognition 

tasks.  

Deep learning algorithms, such as convolutional neural networks (CNNs), can be applied in 

aquaculture for fish detection and classification. These algorithms can analyze images or video 

footage captured by underwater cameras and automatically identify and track fish species, 

enabling efficient monitoring and management of aquaculture systems (C. Wang et al., 2021). 

One example of cloud computing is the proposed smart aquaculture system based on the If This 

Then That (IFTTT) model and cloud integration. This system enables real-time monitoring and control 

of aquaculture operations, allowing farmers to remotely manage and optimize various parameters 

such as water quality, feeding schedules, and environmental conditions. The cloud integration 

aspect of the system ensures that data is securely stored and accessible from anywhere, facilitating 

efficient data analysis and decision-making (Dzulqornain et al., 2018). 

Cloud computing also plays a significant role in data processing and analysis in aquaculture. With 

the ability to handle large volumes of data, cloud-based solutions enable advanced analytics, 

machine learning, and predictive modeling. This can help optimize feeding strategies, predict 

disease outbreaks, and improve overall farm productivity (Low et al., 2011). 

AquaCloud, established in 2017, represents a significant big data initiative rooted in the aquaculture 

industry's quest to address common challenges and foster sustainable growth. This project is affiliated 

with NCE Seafood Innovation and was initially launched in collaboration with prominent cluster 

members, including Lerøy Seafood Group ASA, Grieg Seafood ASA, Mowi ASA, Bremnes Seashore 

AS, Lingalaks AS, Eide Fjordbruk, and Bolaks AS. Over the years, AquaCloud has witnessed substantial 

development, expanding its reach to encompass an even broader spectrum of leading aquaculture 

companies (AquaCloud, 2023). 
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Initially, this pioneering endeavor aimed to create a secure database for data storage and employ 

advanced analytics to pinpoint potential sea lice outbreaks. While this aspect of the project 

achieved some success, it faced challenges related to data quality and reliability, hindering the 

realization of its ambitious goals at the time (AquaCloud, 2023). 

At the heart of AquaCloud lies the Data Platform, an ever-evolving repository of high-resolution data 

contributed by participating companies from their aquaculture operations. While respecting legal 

and competitive constraints, selected datasets are shared among participants and, in some cases, 

made available to third parties to fuel innovation (AquaCloud, 2023). 

The project has evolved from being primarily a sea lice forecasting tool to serving as a central hub 

for industry activities, welcoming companies from various sectors within the aquaculture industry. In 

response to the initial findings of data quality deficiencies, the project initiated several workflows to 

address standardization needs across the industry (AquaCloud, 2023): 

1. Sensor Data: An open IoT-based standard was introduced, facilitating equitable access to 

aquaculture sensors and systems. 

2. Fish Health: Common standards were established for aspects such as identifying causes of 

mortality and categorizing fish groups, enabling seamless digital information exchange 

among health and welfare entities. 

3. Environmental Data: A review of the environmental segment of the NS9417 standard aimed 

to enhance clarity and consistency in terminology and documentation methods for 

production-related environmental data. 

The use of Observers, both linear, like Kalman filter, and nonlinear is very interesting for the future of 

aquaculture sector. 

Kalman filter is a mathematical algorithm widely used in various fields, including aquaculture, to 

estimate the state of a dynamic system based on a series of noisy measurements. 

The Kalman filter is a powerful tool for state estimation in linear systems. However, in nonlinear systems, 

the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are commonly used to handle 

the nonlinearity. The EKF linearizes the system dynamics and measurement equations, while the UKF 

approximates the probability distribution of the state using a set of carefully chosen sigma points. 

These filters have been successfully applied in various fields, including control theory, battery 

monitoring, and electric vehicles (Afshar et al., 2019; Song et al., 2017; Wan & Van Der Menve, 2000). 
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In the context of aquaculture, the EKF and UKF can be utilized to estimate the state variables and 

parameters of nonlinear models used in aquafarm management. For example, by assimilating 

dissolved oxygen data, the EKF can provide dynamic estimations of oxygen demand, which can be 

used to optimize oxygen supply and improve the overall health and productivity of aquafarms. 

By applying the Kalman filter in aquaculture, farmers and researchers can enhance the efficiency 

and sustainability of their operations. It enables them to make informed decisions based on accurate 

real-time data, leading to improved yields, reduced costs, and better environmental stewardship. 

The Kalman filter can be applied to monitor and control various aspects of fish farming, water quality, 

and environmental conditions: fish tracking and monitoring, water quality management, 

environmental parameter estimation, feed control, disease detection and prevention, stocking 

density management or water flow and circulation. 

The continuous-discrete Kalman filter (CD-KF) has been used to assimilate dissolved oxygen data and 

obtain dynamic estimations of oxygen demand in land-based aquaculture farms. This approach can 

help optimize oxygen supply and improve the overall health and productivity of aquafarms (Royer & 

Pastres, 2023). 

Decision support systems (DSS) play a crucial role in the aquaculture industry by providing valuable 

information and aiding in decision-making processes. Several studies have explored the use of 

various tools and techniques to support decision-making in aquaculture. One of the most important 

is the result of the Horizon 2020 project Co-creating a decision support framework to ensure 

sustainable fish production in Europe under climate change. They studied the implementing of a 

computer-based decision support system for the stakeholders in the context of climate change 

(Stavrakidis-Zachou et al., 2018). 

 

Modern sensing Technique 

Aquaculture has greatly benefited from modern sensing techniques. Remote sensing technology has 

been successfully applied in various aspects of aquaculture management and decision-making. 

Satellite remote sensing has been used to monitor and map coastal aquaculture areas, including 

coral reefs, wetlands, water quality, and fisheries. It provides continuous mapping capabilities in the 

coastal zone, making it more advantageous than optical remote sensing instruments. Remote 

sensing technology has also been used to extract marine aquaculture areas, although there are 

differences between marine and pond aquaculture. Additionally, remote sensing has enabled high-

resolution mapping of pond aquaculture, supporting the sustainable development of coastal 

ecosystems (McCarthy et al., 2017; Ottinger et al., 2017, 2018; J. Wang et al., 2022). 
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Specifically, remote sensing has been used to monitor raft aquaculture products and to develop an 

improved method for extracting raft aquaculture areas from remote sensing images, highlighting the 

relevance of remote sensing in aquaculture monitoring, improving the accuracy and periodic 

monitoring capabilities of remote sensing in aquaculture management, particularly in mapping 

coastal aquaculture areas using object-based image analysis (Cui et al., 2019; Fu et al., 2019). 

DeepSense is a world class big ocean data innovation environment that helps drive growth in the 

ocean economy with collaborative academic industry research (DeepSense, 2023) 

There are some examples of the use of satellite observation for different uses in aquaculture, both for 

fish and molluscs, such as site selection and marine spatial planning, remote sensing or estimation of 

aquaculture production (Kang et al., 2019; Ottinger et al., 2017, 2018; Snyder et al., 2017; J. Wang et 

al., 2022). 

Underwater wireless acoustic sensors are designed to operate in the challenging underwater 

environment and provide real-time data for decision-making and management. 

In terms of aquaculture water quality monitoring, a comprehensive review discusses the sensors, 

biosensors, and analytical technologies available for this purpose. These technologies enable the 

continuous monitoring of parameters such as temperature, dissolved oxygen, pH, and nutrient levels, 

ensuring optimal conditions for aquaculture operations (Su et al., 2020). 

Underwater acoustic modems are essential components of underwater wireless sensor networks. 

These modems facilitate reliable communication between the sensors deployed in the water and 

the data collection and management systems. They are designed to withstand the harsh underwater 

conditions and provide efficient data transmission (Sendra et al., 2016). 

Single beam sonar is an acoustic sensing technique with a high potential use in aquaculture for 

various purposes, including fish detection, biomass estimation, and habitat mapping. Some studies 

have used single beam sonar for other purposes that can be very useful in future for aquaculture 

farms. This study suggests that single beam sonar systems can be utilized to actively detect and select 

targets of interest in aquaculture farms. By adjusting the sonar beam direction and angle, farmers 

should be able to effectively scan the aquatic environment and gather information on fish presence, 

behavior, and habitat characteristics. This information can aid in making informed decisions 

regarding feeding, stocking, and overall management of aquaculture operations. While further 

research specific to the use of single beam sonar in aquaculture is needed, the findings from the 

study on echolocating porpoises provide a foundation for understanding the potential applications 

and benefits of this acoustic sensing technique in the aquaculture industry (Wisniewska et al., 2012). 
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Hydroacoustic sensing and telemetry have emerged as important tools in aquaculture for monitoring 

various aspects of fish behavior, welfare, and production. Telemetry, which involves the use of 

physiological telemetry devices, has been used to remotely monitor fish activity and energetics. This 

technology has proven valuable in assessing the swimming activity and energetic expenditure of fish 

in both controlled conditions and natural environments. Hydroacoustic sensing utilizes sound waves 

to assess fish biomass, spatial distribution, and behavior. It has been successfully applied in 

aquaculture ponds to estimate the standing stock of fish species such as Nile tilapia. Additionally, 

hydroacoustic techniques have been used to estimate the biomass and spatial distribution of fish in 

sea cages and coastal waters, with acoustic target strength being a crucial parameter in this 

method (Cooke et al., 2000; Cooke et al., 2004; Kim et al., 2018; J. M. Liu et al., 2022). 

The integration of hydroacoustic sensing and telemetry in aquaculture has provided valuable insights 

into fish behavior and welfare. For example, these technologies have been used to monitor feeding 

behavior in fish aquaculture, with acoustics, computer vision, and telemetry being the main 

approaches employed. Telemetry-based systems have also been developed to monitor the feeding 

behavior of Atlantic salmon in aquaculture sea-cages. Furthermore, telemetry has been used to 

study the reaction of fish to stress factors, such as oxygen deficiency, in pond aquaculture. These 

studies highlight the potential of telemetry in assessing fish responses to various environmental 

conditions and stressors (Bauer & Schlott, 2006; Darodes de Tailly et al., 2021; Føre et al., 2011). 

In addition to fish behavior and welfare, hydroacoustic sensing and telemetry have been utilized for 

monitoring aquaculture production and environmental factors. Remote sensing, including 

hydroacoustic methods, has been employed to estimate aquaculture production based on Earth 

observation data. This approach takes advantage of the fact that active aquaculture ponds are 

permanently water-covered year-round, making them suitable for remote sensing applications. 

Furthermore, hydroacoustic data collected by sensors have been used to gain insights into fish 

behavior and inform precision aquaculture practices (O’Donncha et al., 2021; Ottinger et al., 2018). 

 

Blockchain technology 

Blockchain technology has the potential to revolutionize the aquaculture sector by addressing 

various challenges and improving efficiency. The use of blockchain in aquaculture can enhance 

traceability, improve supply chain management, and promote sustainability. By implementing 

blockchain technology, the aquaculture industry can ensure transparency and accountability 

throughout the supply chain, from farm to fork. Blockchain can provide a decentralized and 

immutable ledger that records every transaction and movement of seafood products, enabling 
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consumers to verify the origin and quality of the products (Feng et al., 2020; Mileti et al., 2023; 

Tolentino-Zondervan et al., 2023). 

One of the key benefits of blockchain technology in aquaculture is improved traceability. Blockchain 

can enable the tracking of seafood products from their source to the consumer, ensuring that the 

products are safe, sustainable, and comply with regulations (Mileti et al., 2023; Tolentino-Zondervan 

et al., 2023). Additionally, blockchain can facilitate the integration of different stakeholders in the 

supply chain, such as farmers, processors, distributors, and retailers, by providing a shared platform 

for data exchange and collaboration (Tolentino-Zondervan et al., 2023). 

Furthermore, blockchain technology can enhance the efficiency of aquaculture production. By 

utilizing digital technologies such as the Internet of Things, big data, and artificial intelligence, 

blockchain can enable real-time monitoring and data collection, leading to optimized production 

processes and resource management. For example, sensors can be used to monitor water quality, 

feeding patterns, and fish health, allowing farmers to make data-driven decisions and prevent 

disease outbreaks (Zhang & Gui, 2023). 

The adoption of blockchain technology in aquaculture is not without challenges. Implementation 

difficulties, particularly for small and medium-sized enterprises, and the need for standardized 

protocols and interoperability are some of the obstacles that need to be overcome. Additionally, 

the integration of blockchain into existing systems and the establishment of trust among stakeholders 

may require time and resources (Alimohammadlou & Alinejad, 2023; Feng et al., 2020). 

2.2.1.5. Conclusions 

Summarising, there are many different technologies that can be used in aquaculture farms to 

improve them to precision farms. Those technologies have the following advantages: 

• The applications of IoT in aquaculture farms include water quality monitoring, fish monitoring, 

farm monitoring and management, and precision aquaculture. These applications leverage 

IoT technology to collect real-time data, enable remote monitoring and control, and support 

data-driven decision-making in aquaculture operations. 

o GSM technology. 

o On-site and remote interface.  

o Water quality sensors. 

o Fish behavior sensors.  

o Early warning monitoring.  

• Robotics can play a vital role in aquaculture by enabling advancements in fish locomotion 

research, sensor payload development, underwater object detection, water quality 
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monitoring, and automation. The integration of robotics in aquaculture systems offers 

numerous benefits, including improved efficiency, productivity, and sustainability. 

o Remote controlled or autonomous vehicles (ROV/AUV). 

• Cameras have proven to be valuable tools in aquaculture, contributing to fish welfare 

monitoring, water quality assessment, and spatial mapping of aquaculture facilities. The 

integration of cameras with other technologies, such as UAVs and remote sensing, enhances 

the efficiency and accuracy of data collection and analysis in aquaculture operations. 

o Surface camera. 

o Submerged cameras (Feeding camera, stereo camera).  

o Image processing techniques (Hyperspectral or multispectral imager, 3d analyser). 

o Computer vision and machine learning techniques.  

o Image processing techniques. 

• Support tools for decision making are tools that can play a support tool in aquaculture as it’s 

a multidimensional process that requires access to accurate and reliable information. The 

references cited in this response provide valuable insights into different aspects of decision 

support in aquaculture and can inform decision-making processes in the industry. 

o Cloud computing. 

o AquaCloud (predicts sea-lice outbreaks) 

o Observers (Kalman filtering, nonlinear observers). 

o Decision Support Systems (DSS). 

• Modern sensing techniques 

o DeepSense (Big Ocean data innovation environment). 

o Satellite observation combined (or not) with sensor and/or in situ observation.  

o Underwater wireless acoustic sensors. 

o Single beam sonar. 

o Hydroacoustic sensing and telemetry (active and passive). 

• Blockchain technology holds great promise for the aquaculture sector. It can improve 

traceability, enhance supply chain management, and promote sustainability. By leveraging 

digital technologies and ensuring transparency, blockchain can revolutionize the way 

seafood products are produced, distributed, and consumed. However, challenges related 

to implementation and standardization need to be addressed for the widespread adoption 

of blockchain in aquaculture. 
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2.2.2.Data collection from stakeholders 

2.2.2.1. Survey preparation 

The working group discussed the results of the scientific review and prepared a survey to be 

distributed to producers in the different countries. 

In order to maximise the number of responses, the survey was designed to be simple and possible to 

be answered in a short time. It was divided into different blocks: 

- Questions about the characteristics of the farm: Country, species, type of farm and 

environment. 

- Questions about the implementation of the different technologies identified during the 

scientific review: Internet of Things, Robotics, Camera systems, Support tools for decision 

making, Modern sensing techniques, Blockchain technology.  In this block, the farmers had 

to answer with the following scale: 

o 1 = Strongly Agree 

o 2 = Agree 

o 3 = Undecided 

o 4 = Disagree 

o 5 = Strongly Disagree 

- Open question about the top priorities for the course structure and needs. 

- Open question about the key needs for the Vocational Training and Curriculum development 

in the aquaculture industry. 

The survey was prepared in English and translated into the different languages of the consortium 

partners (Italian, French, Spanish, Turkish, Portuguese and Greek). 
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Illustration 1. Screenshot of the header of the questionnaire. 

 

 

Illustration 2. Screenshot of beginning of Section 2 of the questionnaire. 
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2.2.2.2. Survey content 

The survey was divided into different sections as follow. 

Section 1: Species.  

Species and Farm Characteristics. 

 1a. Where are you located? 

   France  Greece  Italy 

   Portugal  Spain  Turkey 

   Other   

 1b. Species: Please specify the species you primarily focus on 

   Sea bass  Sea bream  Meagre 

   Rainbow trout  Carp  Eel 

   Tuna  Turbot  Sole 

   Mussels  Oysters  Clams 

   Other   

 1c. Type of farm: What type of farm do you operate? 

   RAS 

   Sea cages 

   Open system (raceways, flow-through tanks, ponds...) 

   Molluscs on the bottom 

   Molluscs on suspension (Longlines, raft, batea…) 

   Raised molluscs (in a container or tables with bags) 

   Other 

 1d. Environment: Specify the environment of your farm. 

   Marine 

   Freshwater 

   Brackish 
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Section 2: Technology Implementation. 

IoT/Communication and Sensing Networks - How extensively have you integrated the following 

technologies into your aquaculture systems? 

 2a. Alarm by Global System for Mobile (GSM). 

   1  2  3  4  5 

 2b. On-site and remote interface. 

   1  2  3  4  5 

 2c. Water quality sensors (real-time, remote, online or automated monitoring). 

   1  2  3  4  5 

 2d. Fish behavior sensors. 

   1  2  3  4  5 

 2e. Early warning monitoring. 

   1  2  3  4  5 

   

Section 3: Robotics.  

Are remote-controlled or autonomous vehicles (ROV/AUV) currently in use in your aquaculture 

practices? 

 3a. Remote controlled or autonomous vehicles (ROV/AUV). 

   1  2  3  4  5 

   

Section 4: Camera Systems-based Applications and Solutions.  

How extensively have you integrated Camera system-based applications and solutions into your 

aquaculture systems? 

 4a. Surface camera. 

   1  2  3  4  5 

 4b. Submerged cameras (Feeding camera, stereo camera). 

   1  2  3  4  5 

 4c. Image processing techniques (Hyperspectral or multispectral imager, 3d analyser) 

   1  2  3  4  5 

 4d. Computer vision and machine learning techniques. 

   1  2  3  4  5 

 4e. Image processing techniques. 

   1  2  3  4  5 
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Section 5: Support Tools for Decision Making.  

To what extent do you use support tools for decision making into your aquaculture systems? 

 5a. Cloud computing. 

   1  2  3  4  5 

 5b. AquaCloud (predicts sea-lice outbreaks) 

   1  2  3  4  5 

 5c. Observers (Kalman filtering, nonlinear observers). 

   1  2  3  4  5 

 5d. Decision Support Systems (DSS). 

   1  2  3  4  5 

   

Section 6: Modern Sensing Technique.  

To what extent do you use support tools for decision making into your aquaculture systems? 

 6a. DeepSense (Big ocean data innovation environment). 

   1  2  3  4  5 

 6b. Satellite observation combined (or not) with sensor and/or in situ observation. 

   1  2  3  4  5 

 6c. Underwater wireless acoustic sensors. 

   1  2  3  4  5 

 6d. Single beam sonar. 

   1  2  3  4  5 

 6e. Hydroacoustic sensing and telemetry (active and passive). 

   1  2  3  4  5 

   

Section 7: Blockchain Technology.  

To what extent do you use or implement blockchain technology in your aquaculture processes? 

 7a. Blockchain Technology. 

   1  2  3  4  5 
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Section 8: Training Course Structure and Needs 

 8a. What do you consider the top priorities for training courses in Aquaculture 4.0? 

   

Section 9: Vocational Training and Curriculum Development 

 9a. What are the key needs for vocational training in the aquaculture industry? 

 

2.2.2.3. Survey distribution 

The survey was distributed to the associated farmers from the Bussiness associations participating in 

the consortium. It was also sent to the farmers from other countries present in the Stakeholders 

database (Deriverable D10.1. Database of Stakeholders and Beneficiaries (DSB)). 

2.2.2.4. Survey results 

A total of 69 responses to the questionnaire were received. Some of the answers cover more than 

one farm, as there are many companies that have many sites with different species and 

environments. 

 

Figure 1. Distribution of responses by country. 

Even though the survey was delivered to farmers from the list of stakeholders, which includes farms 

from many countries around Europe and the participants countries, the number of responses was 

bigger in those countries where a partner of the consortium of the AquaTechInn 4.0 projec is a 

Business Association, as they are able to reach directly the farmers. 

France; 3

Greece; 2

Italy; 30

Portugal; 11

Spain; 14

Turkey; 9
Other; 0
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Figure 2. Species produced on the farms that responded to the questionnaire. 

More than 10 species are farmed produced at the farms that responded to the questionnaire, since 

9 farms indicate that they produce “other” species. There is a good distribution of the species, as its 

covered the main species produced at the Mediterranean aquaculture. 

 

Figure 3. Distribution by species and countries of the responses to the questionnaire. 

Rainbow Trout, followed by mussels, oysters, Sea Bass and Sea Bream, are the most represented 

species. This are the species with the highest production in the countries participating in this project. 
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Figure 4. Production system of the farms that responded to the questionnaire. 

As showed in the previous figure, the distribution of the farms covers all the different types of 

aquaculture production systems. The highest percentage belongs to aquaculture open systems. This 

could be explained by the fact that this system can be used in marine, brackish and freshwater to 

produce different species of fish, being one of the most extended systems in Europe. 

 

Figure 5. Environment of the farm that responded to the questionnaire. 

The distribution of the environment origin is also well balanced between freshwater and marine farms. 

Brackish environment is less common, and it’s well represented in the answers received. 
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Table 2. Distribution of the answers to each question. Included the percentage for each question. 

 1 2 3 4 5 

2a 
29 

42.0 % 

7 

10.1 % 

7 

10.1 % 

9 

13.0 % 

17 

24.6 % 

2b 
26 

37.7 % 

10 

14.5 % 

8 

11.6 % 

5 

7.2 % 

20 

29.0 % 

2c 
24 

34.8 % 

11 

15.9 % 

10 

14.5 % 

6 

8.7 % 

18 

26.1 % 

2d 
24 

34.8 % 

5 

7.2 % 

5 

7.2 % 

6 

8.7 % 

29 

42.0 % 

2e 
20 

29.0 % 

13 

18.8 % 

9 

13.0 % 

4 
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In the Table 2, the distribution of the answers to each question is showed. The shaded cells are the 

most vote in each category. 

As can be seen from these results, many of the selected technologies are of high interest to 

companies in the sector.  

There are also many technologies that are not implemented at the farm level, but this hasn’t mean 

that it’s not interesting for them. Some of these technologies are already being applied in some farms, 

and others have a high potentiality to help the sector to achieve the goal to transform into the 

Aquaculture 4.0, the aquaculture of the future. 

 

Figure 6. Distribution of the answers to each question. 

Some very specific technologies are not interesting to all the companies of the aquaculture sector. 

For example, AquaCloud technology can be used to predict the appearance of sea lice (or other 

kind of similar pathogens), and this can be not so interesting to some specific producers. 

The results of the survey stress the necessity of improving the training of the personnel of the 

aquaculture farms and the programs of the Vocational Training, including those new technologies 

that can be so useful for the future of the aquaculture sector. 
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In the following charts, the response to each question is showed. 
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The last part of the questionnaire was to ask the farmers two open answer questions:  

- What do you consider the top priorities for training courses in Aquaculture 4.0? 

- What are the key needs for vocational training in the aquaculture industry? 

Some of the most relevant answers emphasise different very interesting issues: 

What do you consider the top priorities for training courses in Aquaculture 4.0? 

- Acquiring skills to identify the suitability of breeding sites. 

- Process automation, , including automated feeding and control of the water quality. 

- Monitoring animal health and welfare on the farm. Also preventing the appearance of 

diseases or minimizing its impact. 

- Remote monitoring and control of the farm. 

- Use of new technologies to improve the farm management. 

- Improve the adaptation of the business world and its workers to new technologies and 

advances in the field, in order to industrialise the sector and automate processes. 

- Improving working conditions / employee health. 

- The priority would be short-term (prevention of extreme events) and long-term (historical data 

analysis) monitoring of key environmental parameters (temperature, chlorophyll and 

turbidity). 

- Increase the use of domestic technology and resources in aquaculture production, 

- Possibility to examine of R&D in Aquaculture.  

- Training is useful in every work and process related to aquaculture, especially in fish health 

and fattening.  

- Use of advanced equipment and high-tech tools. 

- Routine farming activities. 

What are the key needs for vocational training in the aquaculture industry? 

- Being prepared for the challenges related with climate change. 

- Importance of the technological development. 

- Application of new technologies to control and ensure Animal Welfare. 

- Biosecurity, Animal Welfare, Applied Aquaculture Technologies training courses. 

- Early recognition of fish diseases. 

- Training of polyvalent operators, capable of dealing with integrated breeding with new 

technologies. 

- More than training courses related with the opportunities of the new technologies. 

- Techniques and technologies, good practice and safety. 
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- Improve the knowledge in farm management. 

- Use of robotic devices and control software for fish farmers. 
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2.3. Conclusions / Next steps 

Aquaculture 4.0 can help the European sector to adapt to the future challenges, such as climate 

change, new species, improve the profitability in a more competitive context. Animal welfare is also 

one of the most important challenges for the sector, and the new technologies can help to improve 

it. Animal health has a direct impact on Food Safety and Public Health. New technologies can help 

the farmers to upgrade the health management, and to be prepared for the future. 

After performing the scientific review, some technologies have been selected because of their 

potential application in aquaculture: 

• Internet of Things (IoT). 

o GSM technology. 

o On-site and remote interface.  

o Water quality sensors. 

o Fish behavior sensors.  

o Early warning monitoring.  

• Robotics. 

o Remote controlled or autonomous vehicles (ROV/AUV). 

• Cameras. 

o Surface camera. 

o Submerged cameras (Feeding camera, stereo camera).  

o Image processing techniques (Hyperspectral or multispectral imager, 3d analyser). 

o Computer vision and machine learning techniques.  

o Image processing techniques. 

• Support tools for decision making. 

o Cloud computing. 

o AquaCloud (predicts sea-lice outbreaks) 

o Observers (Kalman filtering, nonlinear observers). 

o Decision Support Systems (DSS). 

• Modern sensing techniques 

o DeepSense (Big ocean data innovation environment). 

o Satellite observation combined (or not) with sensor and/or in situ observation.  

o Underwater wireless acoustic sensors. 

o Single beam sonar. 

o Hydroacoustic sensing and telemetry (active and passive). 

• Blockchain technology. 
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These results have to be studied and adapted for future tasks, selecting those technologies more 

interesting for the farmers. 

It can also be interesting to adapt the contents depending on the species or type of facility, focusing 

on the most interesting for each one. 

It will be highly interesting to study the comments done by the farmers in the survey to adapt the 

future contents of the training courses for Vocational Training to their needs. 

  



 

45 of 76 

3. References 

Afshar, S., Morris, K., & Khajepour, A. (2019). A modified sliding-mode observer design with application 

to diffusion equation. International Journal of Control, 92(10), 2369–2382. 

https://doi.org/10.1080/00207179.2018.1438668  

Alimohammadlou, M., & Alinejad, S. (2023). Challenges of blockchain implementation in SMEs’ supply 

chains: an integrated IT2F-BWM and IT2F-DEMATEL method. Electronic Commerce Research. 

https://doi.org/10.1007/s10660-023-09696-3  

APROMAR. (2022). Aquaculture in Spain 2023. Available at: https://apromar.es/wp-

content/uploads/2023/10/Aquaculture_in_Spain_2023_APROMAR.pdf  

AquaCloud. (2023). AquaCloud. Available at: https://aquacloud.ai/  

Bakar, Z. A., Nor, M. Z. M., Kadiran, K. A., Misnan, M. F., & Noorezam, M. (2022). Smart Plant Monitoring 

System Using Aquaponics Production Technological with Arduino Development Environment 

(IDE) and SMS Alert: A Prototype. International Journal of Interactive Mobile Technologies, 

16(22), 32–47. https://doi.org/10.3991/ijim.v16i22.34581  

Barreto, M. O., Rey Planellas, S., Yang, Y., Phillips, C., & Descovich, K. (2022). Emerging indicators of 

fish welfare in aquaculture. In Reviews in Aquaculture (Vol. 14, Issue 1, pp. 343–361). John Wiley 

and Sons Inc. https://doi.org/10.1111/raq.12601  

Bauer, C., & Schlott, G. (2006). Reaction of common carp (Cyprinus carpio, L.) to oxygen deficiency 

in winter as an example for the suitability of radio telemetry for monitoring the reaction of fish to 

stress factors in pond aquaculture. Aquaculture Research, 37(3), 248–254. 

https://doi.org/10.1111/j.1365-2109.2005.01426.x  

Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers, 7(1), 6–11. 

https://doi.org/10.2527/af.2017.0102  

Biazi, V., & Marques, C. (2023). Industry 4.0-based smart systems in aquaculture: A comprehensive 

review. In Aquacultural Engineering (Vol. 103). Elsevier B.V. 

https://doi.org/10.1016/j.aquaeng.2023.102360  

Bilodeau, S. M., Schwartz, A. W. H., Xu, B., Pauca, V. P., & Silman, M. R. (2022). A low-cost, long-term 

underwater camera trap network coupled with deep residual learning image analysis. PLoS 

ONE, 17(2 February). https://doi.org/10.1371/journal.pone.0263377  

https://doi.org/10.1080/00207179.2018.1438668
https://doi.org/10.1007/s10660-023-09696-3
https://apromar.es/wp-content/uploads/2023/10/Aquaculture_in_Spain_2023_APROMAR.pdf
https://apromar.es/wp-content/uploads/2023/10/Aquaculture_in_Spain_2023_APROMAR.pdf
https://aquacloud.ai/
https://doi.org/10.3991/ijim.v16i22.34581
https://doi.org/10.1111/raq.12601
https://doi.org/10.1111/j.1365-2109.2005.01426.x
https://doi.org/10.2527/af.2017.0102
https://doi.org/10.1016/j.aquaeng.2023.102360
https://doi.org/10.1371/journal.pone.0263377


 

46 of 76 

Biswas, G., & Sakai, M. (2014). Loop-mediated isothermal amplification (LAMP) assays for detection 

and identification of aquaculture pathogens: Current state and perspectives. In Applied 

Microbiology and Biotechnology (Vol. 98, Issue 7, pp. 2881–2895). Springer Verlag. 

https://doi.org/10.1007/s00253-014-5531-z  

Boom, B. J., He, J., Palazzo, S., Huang, P. X., Beyan, C., Chou, H. M., Lin, F. P., Spampinato, C., & Fisher, 

R. B. (2014). A research tool for long-term and continuous analysis of fish assemblage in coral-

reefs using underwater camera footage. Ecological Informatics, 23, 83–97. 

https://doi.org/10.1016/j.ecoinf.2013.10.006  

Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., 

Handisyde, N., Gatward, I., & Corner, R. (2010). Aquaculture: Global status and trends. In 

Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1554, pp. 

2897–2912). Royal Society. https://doi.org/10.1098/rstb.2010.0170  

Capocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., & Toal, D. (2017). Inspection-class remotely 

operated vehicles-a review. In Journal of Marine Science and Engineering (Vol. 5, Issue 1). MDPI 

AG. https://doi.org/10.3390/jmse5010013  

Castañeda, R. A., Weyl, O. L. F., & Mandrak, N. E. (2020). Using occupancy models to assess the 

effectiveness of underwater cameras to detect rare stream fishes. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 30(3), 565–576. https://doi.org/10.1002/aqc.3254  

Chang, C. C., Ubina, N. A., Cheng, S. C., Lan, H. Y., Chen, K. C., & Huang, C. C. (2022). A Two-Mode 

Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology. Sensors, 

22(19). https://doi.org/10.3390/s22197603  

Cooke, S., Chandroo, K., Beddow, T., Moccia, R., & McKinley, R. (2000). Swimming activity and 

energetic expenditure of captive rainbow trout Oncorhynchus mykiss (walbaum) estimated by 

electromyogram telemetry. Aquaculture Research, 31(6), 495-505. 

https://doi.org/10.1046/j.1365-2109.2000.00470.x  

Cooke, S., Thorstad, E., & Hinch, S. (2004). Activity and energetics of free‐swimming fish: insights from 

electromyogram telemetry. Fish and Fisheries, 5(1), 21-52. https://doi.org/10.1111/j.1467-

2960.2004.00136.x  

Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial 

effects and future challenges. In Aquaculture (Vols. 356–357, pp. 351–356). 

https://doi.org/10.1016/j.aquaculture.2012.04.046  

https://doi.org/10.1007/s00253-014-5531-z
https://doi.org/10.1016/j.ecoinf.2013.10.006
https://doi.org/10.1098/rstb.2010.0170
https://doi.org/10.3390/jmse5010013
https://doi.org/10.1002/aqc.3254
https://doi.org/10.3390/s22197603
https://doi.org/10.1046/j.1365-2109.2000.00470.x
https://doi.org/10.1111/j.1467-2960.2004.00136.x
https://doi.org/10.1111/j.1467-2960.2004.00136.x
https://doi.org/10.1016/j.aquaculture.2012.04.046


 

47 of 76 

Cui, B., Fei, D., Shao, G., Lu, Y., & Chu, J. (2019). Extracting raft aquaculture areas from remote sensing 

images via an improved U-net with a PSE structure. Remote Sensing, 11(17). 

https://doi.org/10.3390/rs11172053  

Darodes de Tailly, J. B., Keitel, J., Owen, M. A. G., Alcaraz-Calero, J. M., Alexander, M. E., & Sloman, 

K. A. (2021). Monitoring methods of feeding behaviour to answer key questions in penaeid 

shrimp feeding. In Reviews in Aquaculture (Vol. 13, Issue 4, pp. 1828–1843). John Wiley and Sons 

Inc. https://doi.org/10.1111/raq.12546  

Davidson, K., Whyte, C., Aleynik, D., Dale, A., Gontarek, S., Kurekin, A. A., McNeill, S., Miller, P. I., Porter, 

M., Saxon, R., & Swan, S. (2021). HABreports: Online Early Warning of Harmful Algal and Biotoxin 

Risk for the Scottish Shellfish and Finfish Aquaculture Industries. Frontiers in Marine Science, 8. 

https://doi.org/10.3389/fmars.2021.631732  

DeepSense. (2023). DeepSense. Available at: https://deepsense.ca/ocean-of-data-challenge/  

Den Ouden, C. J., Wills, P. S., Lopes, L., Sanderson, J., & Ouyang, B. (2022). Evolution of the Hybrid 

Aerial Underwater Robotic System (HAUCS) for Aquaculture: Sensor Payload and Extension 

Development. Vehicles, 4(2), 390–408. https://doi.org/10.3390/vehicles4020023  

Dong, H. T., Chaijarasphong, T., Barnes, A. C., Delamare-Deboutteville, J., Lee, P. A., Senapin, S., 

Mohan, C. V., Tang, K. F. J., McGladdery, S. E., & Bondad-Reantaso, M. G. (2023). From the basics 

to emerging diagnostic technologies: What is on the horizon for tilapia disease diagnostics? In 

Reviews in Aquaculture (Vol. 15, Issue S1, pp. 186–212). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12734  

Dzulqornain, M. I., Harun Al Rasyid, M. U., & Sukaridhoto, S. (2018). Design and Development of Smart 

Aquaculture System Based on IFTTT Model and Cloud Integration. MATEC Web of Conferences, 

164. https://doi.org/10.1051/matecconf/201816401030  

FEAP. (2022). FEAP Annual Report 2022. Available at: https://feap.info/wp-

content/uploads/2023/03/feap-annual-report-feap-2022.pdf  

Feng, H., Wang, X., Duan, Y., Zhang, J., & Zhang, X. (2020). Applying blockchain technology to 

improve agri-food traceability: A review of development methods, benefits and challenges. In 

Journal of Cleaner Production (Vol. 260). Elsevier Ltd. 

https://doi.org/10.1016/j.jclepro.2020.121031  

Fernandes-Salvador, J. A., Davidson, K., Sourisseau, M., Revilla, M., Schmidt, W., Clarke, D., Miller, P. I., 

Arce, P., Fernández, R., Maman, L., Silva, A., Whyte, C., Mateo, M., Neira, P., Mateus, M., Ruiz-

https://doi.org/10.3390/rs11172053
https://doi.org/10.1111/raq.12546
https://doi.org/10.3389/fmars.2021.631732
https://deepsense.ca/ocean-of-data-challenge/
https://doi.org/10.3390/vehicles4020023
https://doi.org/10.1111/raq.12734
https://doi.org/10.1051/matecconf/201816401030
https://feap.info/wp-content/uploads/2023/03/feap-annual-report-feap-2022.pdf
https://feap.info/wp-content/uploads/2023/03/feap-annual-report-feap-2022.pdf
https://doi.org/10.1016/j.jclepro.2020.121031


 

48 of 76 

Villarreal, M., Ferrer, L., & Silke, J. (2021). Current Status of Forecasting Toxic Harmful Algae for the 

North-East Atlantic Shellfish Aquaculture Industry. In Frontiers in Marine Science (Vol. 8). Frontiers 

Media S.A. https://doi.org/10.3389/fmars.2021.666583  

Føre, M., Alfredsen, J. A., & Gronningsater, A. (2011). Development of two telemetry-based systems 

for monitoring the feeding behaviour of Atlantic salmon (Salmo salar L.) in aquaculture sea-

cages. Computers and Electronics in Agriculture, 76(2), 240–251. 

https://doi.org/10.1016/j.compag.2011.02.003  

Fu, Y., Deng, J., Ye, Z., Gan, M., Wang, K., Wu, J., Yang, W., & Xiao, G. (2019). Coastal aquaculture 

mapping from very high spatial resolution imagery by combining object-based neighbor 

features. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030637  

Gentry, R. R., Lester, S. E., Kappel, C. V., White, C., Bell, T. W., Stevens, J., & Gaines, S. D. (2017). Offshore 

aquaculture: Spatial planning principles for sustainable development. In Ecology and Evolution 

(Vol. 7, Issue 2, pp. 733–743). John Wiley and Sons Ltd. https://doi.org/10.1002/ece3.2637  

Gernez, P., Doxaran, D., & Barillé, L. (2017). Shellfish aquaculture from Space: Potential of Sentinel2 to 

monitor tide-driven changes in turbidity, chlorophyll concentration and oyster physiological 

response at the scale of an oyster farm. Frontiers in Marine Science, 4(MAY). 

https://doi.org/10.3389/fmars.2017.00137  

Gratacap, R. L., Wargelius, A., Edvardsen, R. B., & Houston, R. D. (2019). Potential of Genome Editing 

to Improve Aquaculture Breeding and Production. In Trends in Genetics (Vol. 35, Issue 9, pp. 

672–684). Elsevier Ltd. https://doi.org/10.1016/j.tig.2019.06.006  

Hassan, S. G., Hasan, M., & Li, D. (2016). Information fusion in aquaculture: A state-of the art review. 

In Frontiers of Agricultural Science and Engineering (Vol. 3, Issue 3, pp. 206–221). Higher 

Education Press Limited Company. https://doi.org/10.15302/J-FASE-2016111   

Hathurusingha, P. I., & Davey, K. R. (2014). A predictive model for taste taint accumulation in 

Recirculating Aquaculture Systems (RAS) farmed-fish - demonstrated with geosmin (GSM) and 

2-methylisoborneol (MIB). Ecological Modelling, 291, 242–249. 

https://doi.org/10.1016/j.ecolmodel.2014.08.009 

Hobday, A. J., Spillman, C. M., Paige Eveson, J., & Hartog, J. R. (2016). Seasonal forecasting for 

decision support in marine fisheries and aquaculture. Fisheries Oceanography, 25, 45–56. 

https://doi.org/10.1111/fog.12083  

https://doi.org/10.3389/fmars.2021.666583
https://doi.org/10.1016/j.compag.2011.02.003
https://doi.org/10.3390/su11030637
https://doi.org/10.1002/ece3.2637
https://doi.org/10.3389/fmars.2017.00137
https://doi.org/10.1016/j.tig.2019.06.006
https://doi.org/10.15302/J-FASE-2016111
https://doi.org/10.1111/fog.12083


 

49 of 76 

Hossain, P. R., Amjath-Babu, T. S., Krupnik, T. J., Braun, M., Mohammed, E. Y., & Phillips, M. (2021). 

Developing Climate Information Services for Aquaculture in Bangladesh: A Decision Framework 

for Managing Temperature and Rainfall Variability-Induced Risks. Frontiers in Sustainable Food 

Systems, 5. https://doi.org/10.3389/fsufs.2021.677069  

Huang, L., Li, Z., Li, S., Liu, L., & Shi, Y. (2020). Design and application of a free and lightweight 

aquaculture water quality detection robot. Journal Europeen Des Systemes Automatises, 53(1), 

111–122. https://doi.org/10.18280/jesa.530114  

Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient wireless 

sensor networks for precision agriculture: A review. In Sensors (Switzerland) (Vol. 17, Issue 8). MDPI 

AG. https://doi.org/10.3390/s17081781  

Kang, J., Sui, L., Yang, X., Liu, Y., Wang, Z., Wang, J., Yang, F., Liu, B., & Ma, Y. (2019). Sea surface-

visible aquaculture spatial-temporal distribution remote sensing: A case study in Liaoning 

Province, China from 2000 to 2018. Sustainability (Switzerland), 11(24). 

https://doi.org/10.3390/SU11247186   

Kassem, T., Shahrour, I., El Khatabi, J., & Raslan, A. (2021). Smart and sustainable aquaculture farms. 

Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910685  

Kim, H., Kang, D., Cho, S., Kim, M., Park, J., & Kim, K. (2018). Acoustic target strength measurements 

for biomass estimation of aquaculture fish, Redlip mullet (Chelon haematocheilus). Applied 

Sciences (Switzerland), 8(9). https://doi.org/10.3390/app8091536  

Kumar, G., Engle, C., & Tucker, C. (2018). Factors Driving Aquaculture Technology Adoption. In 

Journal of the World Aquaculture Society (Vol. 49, Issue 3, pp. 447–476). Blackwell Publishing Inc. 

https://doi.org/10.1111/jwas.12514  

Kumar, U., Werners, S., Roy, S., Ashraf, S., Hoang, L. P., Datta, D. K., & Ludwig, F. (2020). Role of 

information in farmers’ response toweather and water related stresses in the lower Bengal Delta, 

Bangladesh. Sustainability (Switzerland), 12(16). https://doi.org/10.3390/su12166598  

Li, D., Li, X., Wang, Q., & Hao, Y. (2022). Advanced Techniques for the Intelligent Diagnosis of Fish 

Diseases: A Review. In Animals (Vol. 12, Issue 21). MDPI. https://doi.org/10.3390/ani12212938  

Liang, W. Y., & Juang, J. G. (2022). Application of image identification to UAV control for cage culture. 

Science Progress, 105(4). https://doi.org/10.1177/00368504221135450  

https://doi.org/10.3389/fsufs.2021.677069
https://doi.org/10.18280/jesa.530114
https://doi.org/10.3390/s17081781
https://doi.org/10.3390/SU11247186
https://doi.org/10.3390/su131910685
https://doi.org/10.3390/app8091536
https://doi.org/10.1111/jwas.12514
https://doi.org/10.3390/su12166598
https://doi.org/10.3390/ani12212938
https://doi.org/10.1177/00368504221135450


 

50 of 76 

Lim, H. R., Khoo, K. S., Chia, W. Y., Chew, K. W., Ho, S. H., & Show, P. L. (2022). Smart microalgae farming 

with internet-of-things for sustainable agriculture. In Biotechnology Advances (Vol. 57). Elsevier 

Inc. https://doi.org/10.1016/j.biotechadv.2022.107931  

Lim, L. W. K. (2023). Implementation of Artificial Intelligence in Aquaculture and Fisheries: Deep 

Learning, Machine Vision, Big Data, Internet of Things, Robots and Beyond. Journal of 

Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE3202803  

Liu, H., Ma, X., Yu, Y., Wang, L., & Hao, L. (2023). Application of Deep Learning-Based Object 

Detection Techniques in Fish Aquaculture: A Review. In Journal of Marine Science and 

Engineering (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/jmse11040867  

Liu, J. M., Setiazi, H., & Borazon, E. Q. (2022). Hydroacoustic assessment of standing stock of Nile tilapia 

(Oreochromis niloticus) under 120 kHz and 200 kHz split-beam systems in an aquaculture pond. 

Aquaculture Research, 53(3), 820–831. https://doi.org/10.1111/are.15618  

Liu, X. G., Shao, Z., Cheng, G., Lu, S., Gu, Z., Zhu, H., Shen, H., Wang, J., & Chen, X. (2021). Ecological 

engineering in pond aquaculture: a review from the whole-process perspective in China. In 

Reviews in Aquaculture (Vol. 13, Issue 2, pp. 1060–1076). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12512  

Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud computing adoption. 

Industrial Management and Data Systems, 111(7), 1006–1023. 

https://doi.org/10.1108/02635571111161262  

Marini, S., Fanelli, E., Sbragaglia, V., Azzurro, E., Del Rio Fernandez, J., & Aguzzi, J. (2018). Tracking Fish 

Abundance by Underwater Image Recognition. Scientific Reports, 8(1). 

https://doi.org/10.1038/s41598-018-32089-8  

McCarthy, M. J., Colna, K. E., El-Mezayen, M. M., Laureano-Rosario, A. E., Méndez-Lázaro, P., Otis, D. 

B., Toro-Farmer, G., Vega-Rodriguez, M., & Muller-Karger, F. E. (2017). Satellite Remote Sensing 

for Coastal Management: A Review of Successful Applications. Environmental Management, 

60(2), 323–339. https://doi.org/10.1007/s00267-017-0880-x  

Mileti, A., Arduini, D., Watson, G., & Giangrande, A. (2023). Blockchain Traceability in Trading 

Biomasses Obtained with an Integrated Multi-Trophic Aquaculture. Sustainability (Switzerland), 

15(1). https://doi.org/10.3390/su15010767  

Mustafa, S., M. Shaleh, S. R., Shapawi, R., Estim, A., Fui Fui, C., Ag. Ibrahim, Ag. A., Tuzan, A. D., Seng, 

L. L., Ann, C. C., Jimat, A., & Japar, B. (2021). Application of Fourth Industrial Revolution 

https://doi.org/10.1016/j.biotechadv.2022.107931
https://doi.org/10.47852/bonviewJCCE3202803
https://doi.org/10.3390/jmse11040867
https://doi.org/10.1111/are.15618
https://doi.org/10.1111/raq.12512
https://doi.org/10.1108/02635571111161262
https://doi.org/10.1038/s41598-018-32089-8
https://doi.org/10.1007/s00267-017-0880-x
https://doi.org/10.3390/su15010767


 

51 of 76 

Technologies to Marine Aquaculture for Future Food: Imperatives, Challenges and Prospects. 

Sustainable Marine Structures, 3(1), 22–31. https://doi.org/10.36956/sms.v3i1.378  

Mustapha, U. F., Alhassan, A. W., Jiang, D. N., & Li, G. L. (2021). Sustainable aquaculture development: 

a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). In 

Reviews in Aquaculture (Vol. 13, Issue 4, pp. 2076–2091). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12559  

Njoku, C., Etim-Inyang, I., Itu, P. C., & Uzoezie, A. (2022). Geospatial Assessment of Site Suitability for 

Tilapia Cage Culture in Cross River State, Nigeria. Sarhad Journal of Agriculture, 38(2), 456–469. 

https://doi.org/10.17582/JOURNAL.SJA/2022/38.2.456.469  

O’Donncha, F., Akhriev, A., Eck, B., Burke, M., Filgueira, R., & Grant, J. (2021). Deployment and 

Management of Time Series Forecasts in Ocean Industry. Proceedings - 2021 IEEE International 

Conference on Big Data, Big Data 2021, 4091–4096. 

https://doi.org/10.1109/BigData52589.2021.9671877  

O’Donncha, F., & Grant, J. (2020). Precision Aquaculture. IEEE Internet of Things Magazine, 2(4), 26–

30. https://doi.org/10.1109/iotm.0001.1900033  

Ottinger, M., Clauss, K., & Kuenzer, C. (2017). Large-scale assessment of coastal aquaculture ponds 

with Sentinel-1 time series data. Remote Sensing, 9(5). https://doi.org/10.3390/rs9050440  

Ottinger, M., Clauss, K., & Kuenzer, C. (2018). Opportunities and challenges for the estimation of 

aquaculture production based on earth observation data. Remote Sensing, 10(7). 

https://doi.org/10.3390/rs10071076  

Pavlidis, M., Digka, N., Theodoridi, A., Campo, A., Barsakis, K., Skouradakis, G., Samaras, A., & 

Tsalafouta, A. (2013). Husbandry of zebrafish, danio rerio, and the cortisol stress response. 

Zebrafish, 10(4), 524–531. https://doi.org/10.1089/zeb.2012.0819  

Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing approaches for 

monitoring mangrove species, structure, and biomass: Opportunities and challenges. In Remote 

Sensing (Vol. 11, Issue 3). MDPI AG. https://doi.org/10.3390/rs11030230  

Pizarro, G., Moroño, Á., Paz, B., Franco, J. M., Pazos, Y., & Reguera, B. (2013). Evaluation of passive 

samplers as a monitoring tool for early warning of dinophysis toxins in shellfish. Marine Drugs, 

11(10), 3823–3845. https://doi.org/10.3390/md11103823  

https://doi.org/10.36956/sms.v3i1.378
https://doi.org/10.1111/raq.12559
https://doi.org/10.17582/JOURNAL.SJA/2022/38.2.456.469
https://doi.org/10.1109/BigData52589.2021.9671877
https://doi.org/10.1109/iotm.0001.1900033
https://doi.org/10.3390/rs9050440
https://doi.org/10.3390/rs10071076
https://doi.org/10.1089/zeb.2012.0819
https://doi.org/10.3390/rs11030230
https://doi.org/10.3390/md11103823


 

52 of 76 

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., 

Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., & Trianni, G. (2009). Recent 

advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 

113(SUPPL. 1). https://doi.org/10.1016/j.rse.2007.07.028  

Pramana, R., Suprapto, B. Y., & Nawawi, Z. (2021). Remote Water Quality Monitoring with Early -

Warning System for Marine Aquaculture. E3S Web of Conferences, 324. 

https://doi.org/10.1051/e3sconf/202132405007  

Royer, E., & Pastres, R. (2023). Data assimilation as a key step towards the implementation of an 

efficient management of dissolved oxygen in land-based aquaculture. Aquaculture 

International, 31(3), 1287–1301. https://doi.org/10.1007/s10499-022-01028-w  

Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Invited review: Sensors to 

support health management on dairy farms. Journal of Dairy Science, 96(4), 1928–1952. 

https://doi.org/10.3168/jds.2012-6107  

Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A., & Urban, J. (2017). Application of machine vision 

systems in aquaculture with emphasis on fish: state-of-the-art and key issues. In Reviews in 

Aquaculture (Vol. 9, Issue 4, pp. 369–387). Wiley-Blackwell. https://doi.org/10.1111/raq.12143  

Sendra, S., Lloret, J., Jimenez, J. M., & Parra, L. (2016). Underwater Acoustic Modems. IEEE Sensors 

Journal, 16(11), 4063–4071. https://doi.org/10.1109/JSEN.2015.2434890   

Snyder, J., Boss, E., Weatherbee, R., Thomas, A. C., Brady, D., & Newell, C. (2017). Oyster aquaculture 

site selection using landsat 8-derived sea surface temperature, turbidity, and chlorophyll a. 

Frontiers in Marine Science, 4(JUN). https://doi.org/10.3389/fmars.2017.00190  

Song, C., Shao, Y., Song, S., Peng, S., Zhou, F., Chang, C., & Wang, D. (2017). Insulation resistance 

monitoring algorithm for battery pack in electric vehicle based on extended Kalman filtering. 

Energies, 10(5). https://doi.org/10.3390/en10050714  

Stavrakidis-Zachou, O., Papandroulakis, N., Sturm, A., Anastasiadis, P., Wätzold, F., & Lika, K. (2018). 

Towards a computer-based decision support system for aquaculture stakeholders in Greece in 

the context of climate change. In Int. J. Sustainable Agricultural Management and Informatics 

(Vol. 4). http://dx.doi.org/10.1504/IJSAMI.2018.10020706 

Su, X., Sutarlie, L., & Loh, X. J. (2020). Sensors, Biosensors, and Analytical Technologies for Aquaculture 

Water Quality. Research, 2020. https://doi.org/10.34133/2020/8272705  

https://doi.org/10.1016/j.rse.2007.07.028
https://doi.org/10.1051/e3sconf/202132405007
https://doi.org/10.1007/s10499-022-01028-w
https://doi.org/10.3168/jds.2012-6107
https://doi.org/10.1111/raq.12143
https://doi.org/10.1109/JSEN.2015.2434890
https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.3390/en10050714
http://dx.doi.org/10.1504/IJSAMI.2018.10020706
https://doi.org/10.34133/2020/8272705


 

53 of 76 

Sun, N., Fan, B., Ding, Y., Liu, Y., Bi, Y., Seglah, P. A., & Gao, C. (2023). Analysis of the Development 

Status and Prospect of China’s Agricultural Sensor Market under Smart Agriculture. Sensors, 

23(6). https://doi.org/10.3390/s23063307  

Tamim, A. T., Begum, H., Shachcho, S. A., Khan, M. M., Yeboah-Akowuah, B., Masud, M., & Al-Amri, J. 

F. (2022). Development of IoT Based Fish Monitoring System for Aquaculture. Intelligent 

Automation and Soft Computing, 32(1), 55–71. https://doi.org/10.32604/IASC.2022.021559  

Tasnim, R., Shaikat, A. S., Al Amin, A., Hussein, M. R., & Rahman, M. M. (2022). Design of a Smart Biofloc 

Monitoring and Controlling System using IoT. Journal of Engineering Advancements, 155–161. 

https://doi.org/10.38032/jea.2022.04.003  

Tolentino-Zondervan, F., Ngoc, P. T. A., & Roskam, J. L. (2023). Use cases and future prospects of 

blockchain applications in global fishery and aquaculture value chains. In Aquaculture (Vol. 

565). Elsevier B.V. https://doi.org/10.1016/j.aquaculture.2022.739158  

Tonachella, N., Martini, A., Martinoli, M., Pulcini, D., Romano, A., & Capoccioni, F. (2022). An 

affordable and easy-to-use tool for automatic fish length and weight estimation in mariculture. 

Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19932-9  

Torisawa, S., Kadota, M., Komeyama, K., Suzuki, K., & Takagi, T. (2011). A digital stereo-video camera 

system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus 

orientalis, cultured in a net cage. Aquatic Living Resources, 24(2), 107–112. 

https://doi.org/10.1051/alr/2011133  

Torrissen, O., Jones, S., Asche, F., Guttormsen, A., Skilbrei, O. T., Nilsen, F., Horsberg, T. E., & Jackson, D. 

(2013). Salmon lice - impact on wild salmonids and salmon aquaculture. In Journal of Fish 

Diseases (Vol. 36, Issue 3, pp. 171–194). https://doi.org/10.1111/jfd.12061  

Ubina, N. A., & Cheng, S. C. (2022). A Review of Unmanned System Technologies with Its Application 

to Aquaculture Farm Monitoring and Management. In Drones (Vol. 6, Issue 1). MDPI. 

https://doi.org/10.3390/drones6010012  

Ubina, N. A., Cheng, S. C., Chen, H. Y., Chang, C. C., & Lan, H. Y. (2021). A visual aquaculture system 

using a cloud-based autonomous drones. Drones, 5(4). https://doi.org/10.3390/drones5040109  

Vecchio, Y., Masi, M., & Adinolfi, F. (2023). From the AKAP to AKAIE model to assess the uptake of 

technological innovations in the aquaculture sector. In Reviews in Aquaculture (Vol. 15, Issue 2, 

pp. 772–784). John Wiley and Sons Inc. https://doi.org/10.1111/raq.12756  

https://doi.org/10.3390/s23063307
https://doi.org/10.32604/IASC.2022.021559
https://doi.org/10.38032/jea.2022.04.003
https://doi.org/10.1016/j.aquaculture.2022.739158
https://doi.org/10.1038/s41598-022-19932-9
https://doi.org/10.1051/alr/2011133
https://doi.org/10.1111/jfd.12061
https://doi.org/10.3390/drones6010012
https://doi.org/10.3390/drones5040109
https://doi.org/10.1111/raq.12756


 

54 of 76 

Vo, T. T. E., Ko, H., Huh, J. H., & Kim, Y. (2021). Overview of smart aquaculture system: Focusing on 

applications of machine learning and computer vision. In Electronics (Switzerland) (Vol. 10, Issue 

22). MDPI. https://doi.org/10.3390/electronics10222882  

Von Borstel, F. D., Suárez, J., de la Rosa, E., & Gutiérrez, J. (2013). Feeding and water monitoring robot 

in aquaculture greenhouse. Industrial Robot: An International Journal, 40(1), 10–19. 

https://doi.org/10.1108/01439911311294219  

Wan, E. A., & Van Der Menve, R. (2000). The Unscented Kalman Filter for Nonlinear Estimation. 

Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and 

Control Symposium. https://doi.org/10.1109/ASSPCC.2000.882463 

Wang, C., Li, Z., Wang, T., Xu, X., Zhang, X., & Li, D. (2021). Intelligent fish farm—the future of 

aquaculture. In Aquaculture International (Vol. 29, Issue 6, pp. 2681–2711). Springer Science and 

Business Media Deutschland GmbH. https://doi.org/10.1007/s10499-021-00773-8  

Wang, G., Hwang, J. N., Wallace, F., & Rose, C. (2019). Multi-scale fish segmentation refinement and 

missing shape recovery. IEEE Access, 7, 52836–52845. 

https://doi.org/10.1109/ACCESS.2019.2912612  

Wang, J., Yang, X., Wang, Z., Ge, D., & Kang, J. (2022). Monitoring Marine Aquaculture and 

Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote 

Sensing, 14(3). https://doi.org/10.3390/rs14030732  

Wisniewska, D. M., Johnson, M., Beedholm, K., Wahlberg, M., & Madsen, P. T. (2012). Research article: 

Acoustic gaze adjustments during active target selection in echolocating porpoises. Journal of 

Experimental Biology, 215(24), 4358–4373. https://doi.org/10.1242/jeb.074013  

Wu, Y., Liu, J., Wei, Y., An, D., Duan, Y., Li, W., Li, B., Chen, Y., & Wei, Q. (2022). Intelligent control 

method of underwater inspection robot in netcage. Aquaculture Research, 53(5), 1928–1938. 

https://doi.org/10.1111/are.15721  

Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish farming: 

applications, opportunities and challenges. In Reviews in Aquaculture (Vol. 13, Issue 1, pp. 66–

90). Wiley-Blackwell. https://doi.org/10.1111/raq.12464  

Zhang, H., & Gui, F. (2023). The Application and Research of New Digital Technology in Marine 

Aquaculture. In Journal of Marine Science and Engineering (Vol. 11, Issue 2). MDPI. 

https://doi.org/10.3390/jmse11020401  

https://doi.org/10.3390/electronics10222882
https://doi.org/10.1108/01439911311294219
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1007/s10499-021-00773-8
https://doi.org/10.1109/ACCESS.2019.2912612
https://doi.org/10.3390/rs14030732
https://doi.org/10.1242/jeb.074013
https://doi.org/10.1111/are.15721
https://doi.org/10.1111/raq.12464
https://doi.org/10.3390/jmse11020401


 

55 of 76 

Zhu, J., White, C., Wainwright, D. K., Santo, V. Di, Lauder, G. V, & Bart-Smith, H. (2019). Tuna robotics: 

A high-frequency experimental platform exploring the performance space of swimming fishes. 

In Sci. Robot (Vol. 4). https://doi.org/10.1126/scirobotics.aax4615 

 

  

https://doi.org/10.1126/scirobotics.aax4615


 

56 of 76 

4. Appendices 

4.1. Recommended bibliography 

 Afewerki, S., Asche, F., Misund, B., Thorvaldsen, T., & Tveteras, R. (2023). Innovation in the 

Norwegian aquaculture industry. Reviews in Aquaculture, 15(2), 759–771. 

https://doi.org/10.1111/raq.12755  

 Afshar, S., Morris, K., & Khajepour, A. (2019). A modified sliding-mode observer design with 

application to diffusion equation. International Journal of Control, 92(10), 2369–2382. 

https://doi.org/10.1080/00207179.2018.1438668  

 Akram, W., Casavola, A., Kapetanović, N., & Miškovic, N. (2022). A Visual Servoing Scheme 

for Autonomous Aquaculture Net Pens Inspection Using ROV. Sensors, 22(9). 

https://doi.org/10.3390/s22093525  

 Alimohammadlou, M., & Alinejad, S. (2023). Challenges of blockchain implementation in 

SMEs’ supply chains: an integrated IT2F-BWM and IT2F-DEMATEL method. Electronic 

Commerce Research. https://doi.org/10.1007/s10660-023-09696-3  

 Allepuz, A., De Balogh, K., Aguanno, R., Heilmann, M., & Beltran-Alcrudo, D. (2017). Review of 

participatory epidemiology practices in animal health (1980-2015) and future practice 

directions. PLoS ONE, 12(1). https://doi.org/10.1371/JOURNAL.PONE.0169198  

 Alselek, M., Alcaraz-Calero, J. M., Segura-Garcia, J., & Wang, Q. (2022). Water IoT Monitoring 

System for Aquaponics Health and Fishery Applications. Sensors, 22(19). 

https://doi.org/10.3390/s22197679  

 Altoukhov, A. V. (2020). Industrial product platforms and blockchain in aquaculture. IOP 

Conference Series: Earth and Environmental Science, 421(4), 042021. 

https://doi.org/10.1088/1755-1315/421/4/042021  

 Amenyogbe, E., Chen, G., Wang, Z., Lin, M., Lu, X., Atujona, D., & D Abarike, E. (2018). A 

Review of Ghanas Aquaculture Industry. Journal of Aquaculture Research & Development, 

09(08). https://doi.org/10.4172/2155-9546.1000545  

 Amundsen, H. B., Caharija, W., & Pettersen, K. Y. (2022). Autonomous ROV Inspections of 

Aquaculture Net Pens Using DVL. IEEE Journal of Oceanic Engineering, 47(1), 1–19. 

https://doi.org/10.1109/JOE.2021.3105285  

 Antonucci, F., & Costa, C. (2020). Precision aquaculture: a short review on engineering 

innovations. Aquaculture International, 28(1), 41–57. https://doi.org/10.1007/s10499-019-

00443-w  

 Anyadike, C., Mbajiorgu, C., & Ajah, G. (2016). REVIEW OF AQUACULTURAL PRODUCTION 

SYSTEM MODELS. Nigerian Journal of Technology, 35(2), 448. 

https://doi.org/10.4314/NJT.V35I2.29  

 Arechavala-Lopez, P., Cabrera-Álvarez, M. J., Maia, C. M., & Saraiva, J. L. (2022). 

Environmental enrichment in fish aquaculture: A review of fundamental and practical 

aspects. In Reviews in Aquaculture (Vol. 14, Issue 2, pp. 704–728). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12620  

https://doi.org/10.1111/raq.12755
https://doi.org/10.1080/00207179.2018.1438668
https://doi.org/10.3390/s22093525
https://doi.org/10.1007/s10660-023-09696-3
https://doi.org/10.1371/JOURNAL.PONE.0169198
https://doi.org/10.3390/s22197679
https://doi.org/10.1088/1755-1315/421/4/042021
https://doi.org/10.4172/2155-9546.1000545
https://doi.org/10.1109/JOE.2021.3105285
https://doi.org/10.1007/s10499-019-00443-w
https://doi.org/10.1007/s10499-019-00443-w
https://doi.org/10.4314/NJT.V35I2.29
https://doi.org/10.1111/raq.12620


 

57 of 76 

 Bakar, Z. A., Nor, M. Z. M., Kadiran, K. A., Misnan, M. F., & Noorezam, M. (2022). Smart Plant 

Monitoring System Using Aquaponics Production Technological with Arduino Development 

Environment (IDE) and SMS Alert: A Prototype. International Journal of Interactive Mobile 

Technologies, 16(22), 32–47. https://doi.org/10.3991/ijim.v16i22.34581  

 Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H., Allen, J. I., Holt, 

J., & Jennings, S. (2014). Impacts of climate change on marine ecosystem production in 

societies dependent on fisheries. Nature Climate Change, 4(3), 211–216. 

https://doi.org/10.1038/nclimate2119  

 Barreto, M. O., Rey Planellas, S., Yang, Y., Phillips, C., & Descovich, K. (2022). Emerging 

indicators of fish welfare in aquaculture. In Reviews in Aquaculture (Vol. 14, Issue 1, pp. 343–

361). John Wiley and Sons Inc. https://doi.org/10.1111/raq.12601  

 Bauer, C., & Schlott, G. (2006). Reaction of common carp (Cyprinus carpio, L.) to oxygen 

deficiency in winter as an example for the suitability of radio telemetry for monitoring the 

reaction of fish to stress factors in pond aquaculture. Aquaculture Research, 37(3), 248–254. 

https://doi.org/10.1111/j.1365-2109.2005.01426.x  

 Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., 

Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian Earth System 

Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. 

Geoscientific Model Development, 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013  

 Berckmans, D. (2006). Automatic on-line monitoring of animals by precision livestock farming. 

In R. Geers & F. Madec (Eds.), Livestock production and Society (pp. 27–30). Wageningen 

Academic Publishers. http://dx.doi.org/10.3920/978-90-8686-567-3 

 Berckmans, D. (2014). Precision livestock farming technologies for welfare management in 

intensive livestock systems. OIE Revue Scientifique et Technique, 33(1), 189–196. 

https://doi.org/10.20506/RST.33.1.2273  

 Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers, 

7(1), 6–11. https://doi.org/10.2527/af.2017.0102  

 Biazi, V., & Marques, C. (2023). Industry 4.0-based smart systems in aquaculture: A 

comprehensive review. In Aquacultural Engineering (Vol. 103). Elsevier B.V. 

https://doi.org/10.1016/j.aquaeng.2023.102360  

 Bilodeau, S. M., Schwartz, A. W. H., Xu, B., Pauca, V. P., & Silman, M. R. (2022). A low-cost, long-

term underwater camera trap network coupled with deep residual learning image analysis. 

PLoS ONE, 17(2 February). https://doi.org/10.1371/journal.pone.0263377  

 Biswas, G., & Sakai, M. (2014). Loop-mediated isothermal amplification (LAMP) assays for 

detection and identification of aquaculture pathogens: Current state and perspectives. In 

Applied Microbiology and Biotechnology (Vol. 98, Issue 7, pp. 2881–2895). Springer Verlag. 

https://doi.org/10.1007/s00253-014-5531-z  

 Blix, T. B., Dalmo, R. A., Wargelius, A., & Myhr, A. I. (2021). Genome editing on finfish: Current 

status and implications for sustainability. In Reviews in Aquaculture (Vol. 13, Issue 4, pp. 2344–

2363). John Wiley and Sons Inc. https://doi.org/10.1111/raq.12571  

 Boom, B. J., He, J., Palazzo, S., Huang, P. X., Beyan, C., Chou, H. M., Lin, F. P., Spampinato, C., 

& Fisher, R. B. (2014). A research tool for long-term and continuous analysis of fish assemblage 

https://doi.org/10.3991/ijim.v16i22.34581
https://doi.org/10.1038/nclimate2119
https://doi.org/10.1111/raq.12601
https://doi.org/10.1111/j.1365-2109.2005.01426.x
https://doi.org/10.5194/gmd-6-687-2013
http://dx.doi.org/10.3920/978-90-8686-567-3
https://doi.org/10.20506/RST.33.1.2273
https://doi.org/10.2527/af.2017.0102
https://doi.org/10.1016/j.aquaeng.2023.102360
https://doi.org/10.1371/journal.pone.0263377
https://doi.org/10.1007/s00253-014-5531-z
https://doi.org/10.1111/raq.12571


 

58 of 76 

in coral-reefs using underwater camera footage. Ecological Informatics, 23, 83–97. 

https://doi.org/10.1016/j.ecoinf.2013.10.006  

 Bórquez López, R. A., Martinez Cordova, L. R., Gil Nuñez, J. C., Gonzalez Galaviz, J. R., Ibarra 

Gamez, J. C., & Hernandez, R. C. (2020). Implementation and evaluation of open-source 

hardware to monitor water quality in precision aquaculture. Sensors (Switzerland), 20(21), 1–

14. https://doi.org/10.3390/s20216112  

 Bórquez-Lopez, R. A., Casillas-Hernandez, R., Lopez-Elias, J. A., Barraza-Guardado, R. H., & 

Martinez-Cordova, L. R. (2018). Improving feeding strategies for shrimp farming using fuzzy 

logic, based on water quality parameters. Aquacultural Engineering, 81, 38–45. 

https://doi.org/10.1016/j.aquaeng.2018.01.002  

 Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., 

Handisyde, N., Gatward, I., & Corner, R. (2010). Aquaculture: Global status and trends. In 

Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1554, pp. 

2897–2912). Royal Society. https://doi.org/10.1098/rstb.2010.0170  

 Braun, V., & Clarke, V. (2014). What can “thematic analysis” offer health and wellbeing 

researchers? International Journal of Qualitative Studies on Health and Well-Being, 9. 

https://doi.org/10.3402/QHW.V9.26152  

 Brijs, J., Føre, M., Gräns, A., Clark, T. D., Axelsson, M., & Johansen, J. L. (2021). Bio-sensing 

technologies in aquaculture: How remote monitoring can bring us closer to our farm animals. 

In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 376, Issue 1830). 

Royal Society Publishing. https://doi.org/10.1098/rstb.2020.0218  

 Brito Pache, M. C., Sant’Ana, D. A., Araújo Rozales, J. V., Weber, V. A. de M., Oliveira Junior, 

A. da S., Garcia, V., Pistori, H., & Naka, M. H. (2022). Prediction of fingerling biomass with deep 

learning. Ecological Informatics, 71. https://doi.org/10.1016/j.ecoinf.2022.101785  

 Cao, L., Diana, J. S., & Keoleian, G. A. (2013). Role of life cycle assessment in sustainable 

aquaculture. Reviews in Aquaculture, 5(2), 61–71. https://doi.org/10.1111/j.1753-

5131.2012.01080.x  

 Cao, T., Zhao, X., Yang, Y., Zhu, C., & Xu, Z. (2022). Adaptive Recognition of Bioacoustic Signals 

in Smart Aquaculture Engineering Based on r‐Sigmoid and Higher‐Order Cumulants. Sensors, 

22(6). https://doi.org/10.3390/s22062277  

 Capocci, R., Dooly, G., Omerdić, E., Coleman, J., Newe, T., & Toal, D. (2017). Inspection-class 

remotely operated vehicles-a review. In Journal of Marine Science and Engineering (Vol. 5, 

Issue 1). MDPI AG. https://doi.org/10.3390/jmse5010013  

 Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., & Martínez-

Trinidad, J. F. (2012). Immediate water quality assessment in shrimp culture using fuzzy 

inference systems. Expert Systems with Applications, 39(12), 10571–10582. 

https://doi.org/10.1016/j.eswa.2012.02.141  

 Castañeda, R. A., Weyl, O. L. F., & Mandrak, N. E. (2020). Using occupancy models to assess 

the effectiveness of underwater cameras to detect rare stream fishes. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 30(3), 565–576. https://doi.org/10.1002/aqc.3254  

 Chang, C. C., Ubina, N. A., Cheng, S. C., Lan, H. Y., Chen, K. C., & Huang, C. C. (2022). A Two-

Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology. 

Sensors, 22(19). https://doi.org/10.3390/s22197603  

https://doi.org/10.1016/j.ecoinf.2013.10.006
https://doi.org/10.3390/s20216112
https://doi.org/10.1016/j.aquaeng.2018.01.002
https://doi.org/10.1098/rstb.2010.0170
https://doi.org/10.3402/QHW.V9.26152
https://doi.org/10.1098/rstb.2020.0218
https://doi.org/10.1016/j.ecoinf.2022.101785
https://doi.org/10.1111/j.1753-5131.2012.01080.x
https://doi.org/10.1111/j.1753-5131.2012.01080.x
https://doi.org/10.3390/s22062277
https://doi.org/10.3390/jmse5010013
https://doi.org/10.1016/j.eswa.2012.02.141
https://doi.org/10.1002/aqc.3254
https://doi.org/10.3390/s22197603


 

59 of 76 

 Chatziantoniou, A., Charalampis Spondylidis, S., Stavrakidis-Zachou, O., Papandroulakis, N., & 

Topouzelis, K. (2022). Dissolved oxygen estimation in aquaculture sites using remote sensing 

and machine learning. Remote Sensing Applications: Society and Environment, 28. 

https://doi.org/10.1016/j.rsase.2022.100865  

 Chatziantoniou, A., Papandroulakis, N., Stavrakidis-Zachou, O., Spondylidis, S., Taskaris, S., & 

Topouzelis, K. (2023). Aquasafe: A Remote Sensing, Web-Based Platform for the Support of 

Precision Fish Farming. Applied Sciences (Switzerland), 13(10). 

https://doi.org/10.3390/app13106122  

 Chen, C. H., Wu, Y. C., Zhang, J. X., & Chen, Y. H. (2022). IoT-Based Fish Farm Water Quality 

Monitoring System. Sensors, 22(17). https://doi.org/10.3390/s22176700  

 Chen, Y., Zhen, Z., Yu, H., & Xu, J. (2017). Application of fault tree analysis and fuzzy neural 

networks to fault diagnosis in the internet of things (IoT) for aquaculture. Sensors (Switzerland), 

17(1). https://doi.org/10.3390/s17010153  

 Cooke, S., Chandroo, K., Beddow, T., Moccia, R., & McKinley, R. (2000). Swimming activity and 

energetic expenditure of captive rainbow trout Oncorhynchus mykiss (walbaum) estimated 

by electromyogram telemetry. Aquaculture Research, 31(6), 495-505. 

https://doi.org/10.1046/j.1365-2109.2000.00470.x  

 Cooke, S., Thorstad, E., & Hinch, S. (2004). Activity and energetics of free‐swimming fish: insights 

from electromyogram telemetry. Fish and Fisheries, 5(1), 21-52. https://doi.org/10.1111/j.1467-

2960.2004.00136.x  

 Costa, C., Antonucci, F., Boglione, C., Menesatti, P., Vandeputte, M., & Chatain, B. (2013). 

Automated sorting for size, sex and skeletal anomalies of cultured seabass using external 

shape analysis. Aquacultural Engineering, 52, 58–64. 

https://doi.org/10.1016/j.aquaeng.2012.09.001  

 Costa, C., Loy, A., Cataudella, S., Davis, D., & Scardi, M. (2006). Extracting fish size using dual 

underwater cameras. Aquacultural Engineering, 35(3), 218–227. 

https://doi.org/10.1016/j.aquaeng.2006.02.003  

 Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: 

Beneficial effects and future challenges. In Aquaculture (Vols. 356–357, pp. 351–356). 

https://doi.org/10.1016/j.aquaculture.2012.04.046  

 Cui, B., Fei, D., Shao, G., Lu, Y., & Chu, J. (2019). Extracting raft aquaculture areas from remote 

sensing images via an improved U-net with a PSE structure. Remote Sensing, 11(17). 

https://doi.org/10.3390/rs11172053  

 Darodes de Tailly, J. B., Keitel, J., Owen, M. A. G., Alcaraz-Calero, J. M., Alexander, M. E., & 

Sloman, K. A. (2021). Monitoring methods of feeding behaviour to answer key questions in 

penaeid shrimp feeding. In Reviews in Aquaculture (Vol. 13, Issue 4, pp. 1828–1843). John 

Wiley and Sons Inc. https://doi.org/10.1111/raq.12546  

 Davidson, K., Whyte, C., Aleynik, D., Dale, A., Gontarek, S., Kurekin, A. A., McNeill, S., Miller, P. 

I., Porter, M., Saxon, R., & Swan, S. (2021). HABreports: Online Early Warning of Harmful Algal 

and Biotoxin Risk for the Scottish Shellfish and Finfish Aquaculture Industries. Frontiers in Marine 

Science, 8. https://doi.org/10.3389/fmars.2021.631732  

https://doi.org/10.1016/j.rsase.2022.100865
https://doi.org/10.3390/app13106122
https://doi.org/10.3390/s22176700
https://doi.org/10.3390/s17010153
https://doi.org/10.1046/j.1365-2109.2000.00470.x
https://doi.org/10.1111/j.1467-2960.2004.00136.x
https://doi.org/10.1111/j.1467-2960.2004.00136.x
https://doi.org/10.1016/j.aquaeng.2012.09.001
https://doi.org/10.1016/j.aquaeng.2006.02.003
https://doi.org/10.1016/j.aquaculture.2012.04.046
https://doi.org/10.3390/rs11172053
https://doi.org/10.1111/raq.12546
https://doi.org/10.3389/fmars.2021.631732


 

60 of 76 

 Den Ouden, C. J., Wills, P. S., Lopes, L., Sanderson, J., & Ouyang, B. (2022). Evolution of the 

Hybrid Aerial Underwater Robotic System (HAUCS) for Aquaculture: Sensor Payload and 

Extension Development. Vehicles, 4(2), 390–408. https://doi.org/10.3390/vehicles4020023  

 Dong, H. T., Chaijarasphong, T., Barnes, A. C., Delamare-Deboutteville, J., Lee, P. A., Senapin, 

S., Mohan, C. V., Tang, K. F. J., McGladdery, S. E., & Bondad-Reantaso, M. G. (2023). From the 

basics to emerging diagnostic technologies: What is on the horizon for tilapia disease 

diagnostics? In Reviews in Aquaculture (Vol. 15, Issue S1, pp. 186–212). John Wiley and Sons 

Inc. https://doi.org/10.1111/raq.12734  

 Dowlati, M., de la Guardia, M., Dowlati, M., & Mohtasebi, S. S. (2012). Application of machine-

vision techniques to fish-quality assessment. TrAC - Trends in Analytical Chemistry, 40, 168–179. 

https://doi.org/10.1016/j.trac.2012.07.011  

 Duan, Y., Stien, L. H., Thorsen, A., Karlsen, Ø., Sandlund, N., Li, D., Fu, Z., & Meier, S. (2015). An 

automatic counting system for transparent pelagic fish eggs based on computer vision. 

Aquacultural Engineering, 67, 8–13. https://doi.org/10.1016/J.AQUAENG.2015.05.001  

 Dzulqornain, M. I., Harun Al Rasyid, M. U., & Sukaridhoto, S. (2018). Design and Development 

of Smart Aquaculture System Based on IFTTT Model and Cloud Integration. MATEC Web of 

Conferences, 164. https://doi.org/10.1051/matecconf/201816401030  

 Eguiraun, H., & Martinez, I. (2023). Entropy and Fractal Techniques for Monitoring Fish 

Behaviour and Welfare in Aquacultural Precision Fish Farming—A Review. In Entropy (Vol. 25, 

Issue 4). MDPI. https://doi.org/10.3390/e25040559  

 Eze, E., Kirby, S., Attridge, J., & Ajmal, T. (2023). Aquaculture 4.0: hybrid neural network 

multivariate water quality parameters forecasting model. Scientific Reports, 13(1). 

https://doi.org/10.1038/s41598-023-41602-7  

 Falconer, L., Middelboe, A. L., Kaas, H., Ross, L. G., & Telfer, T. C. (2020). Use of geographic 

information systems for aquaculture and recommendations for development of spatial tools. 

In Reviews in Aquaculture (Vol. 12, Issue 2, pp. 664–677). Wiley-Blackwell. 

https://doi.org/10.1111/raq.12345  

 Fan, L., & Liu, Y. (2013). Automate fry counting using computer vision and multi-class least 

squares support vector machine. Aquaculture, 380–383, 91–98. 

https://doi.org/10.1016/j.aquaculture.2012.10.016  

 Farmer, N. A., Powell, J. R., Morris, J. A., Soldevilla, M. S., Wickliffe, L. C., Jossart, J. A., MacKay, 

J. K., Randall, A. L., Bath, G. E., Ruvelas, P., Gray, L., Lee, J., Piniak, W., Garrison, L., Hardy, R., 

Hart, K. M., Sasso, C., Stokes, L., & Riley, K. L. (2022). Modeling protected species distributions 

and habitats to inform siting and management of pioneering ocean industries: A case study 

for Gulf of Mexico aquaculture. PLoS ONE, 17(9 September). 

https://doi.org/10.1371/journal.pone.0267333  

 Feng, H., Wang, X., Duan, Y., Zhang, J., & Zhang, X. (2020). Applying blockchain technology 

to improve agri-food traceability: A review of development methods, benefits and 

challenges. In Journal of Cleaner Production (Vol. 260). Elsevier Ltd. 

https://doi.org/10.1016/j.jclepro.2020.121031   

 Fernandes-Salvador, J. A., Davidson, K., Sourisseau, M., Revilla, M., Schmidt, W., Clarke, D., 

Miller, P. I., Arce, P., Fernández, R., Maman, L., Silva, A., Whyte, C., Mateo, M., Neira, P., 

Mateus, M., Ruiz-Villarreal, M., Ferrer, L., & Silke, J. (2021). Current Status of Forecasting Toxic 

https://doi.org/10.3390/vehicles4020023
https://doi.org/10.1111/raq.12734
https://doi.org/10.1016/j.trac.2012.07.011
https://doi.org/10.1016/J.AQUAENG.2015.05.001
https://doi.org/10.1051/matecconf/201816401030
https://doi.org/10.3390/e25040559
https://doi.org/10.1038/s41598-023-41602-7
https://doi.org/10.1111/raq.12345
https://doi.org/10.1016/j.aquaculture.2012.10.016
https://doi.org/10.1371/journal.pone.0267333
https://doi.org/10.1016/j.jclepro.2020.121031


 

61 of 76 

Harmful Algae for the North-East Atlantic Shellfish Aquaculture Industry. In Frontiers in Marine 

Science (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fmars.2021.666583  

 Ferreira, J. G., Bernard-Jannin, L., Cubillo, A., Lencart e Silva, J., Diedericks, G. P. J., Moore, H., 

Service, M., & Nunes, J. P. (2023). From soil to sea: An ecological modelling framework for 

sustainable aquaculture. Aquaculture, 577. 

https://doi.org/10.1016/j.aquaculture.2023.739920  

 Føre, M., Alfredsen, J. A., & Gronningsater, A. (2011). Development of two telemetry-based 

systems for monitoring the feeding behaviour of Atlantic salmon (Salmo salar L.) in 

aquaculture sea-cages. Computers and Electronics in Agriculture, 76(2), 240–251. 

https://doi.org/10.1016/j.compag.2011.02.003  

 Føre, M., Alver, M., Alfredsen, J. A., Marafioti, G., Senneset, G., Birkevold, J., Willumsen, F. V., 

Lange, G., Espmark, Å., & Terjesen, B. F. (2016). Modelling growth performance and feeding 

behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model 

details and validation through full-scale experiments. Aquaculture, 464, 268–278. 

https://doi.org/10.1016/j.aquaculture.2016.06.045  

 Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, T., Eguiraun, H., Watson, 

W., Stahl, A., Sunde, L. M., Schellewald, C., Skøien, K. R., Alver, M. O., & Berckmans, D. (2018). 

Precision fish farming: A new framework to improve production in aquaculture. In Biosystems 

Engineering (Vol. 173, pp. 176–193). Academic Press. 

https://doi.org/10.1016/j.biosystemseng.2017.10.014  

 Fu, Y., Deng, J., Ye, Z., Gan, M., Wang, K., Wu, J., Yang, W., & Xiao, G. (2019). Coastal 

aquaculture mapping from very high spatial resolution imagery by combining object-based 

neighbor features. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030637  

 Galezan, F. H., Bayati, M. R., Safari, O., & Rohani, A. (2020). Evaluating the Rearing condition 

of Rainbow Trout (Oncorhynchus Mykiss) Using Fuzzy Inference System. Aquacultural 

Engineering, 89, 102051. https://doi.org/10.1016/J.AQUAENG.2020.102051  

 Garcia, V., Sant’Ana, D. A., Garcia Zanoni, V. A., Brito Pache, M. C., Naka, M. H., França 

Albuquerque, P. L., Lewandowski, T., Silva Oliveira Junior, A. Da, Araújo Rozales, J. V., Ferreira, 

M. W., de Queiroz, E. Q. A., Marino Almanza, J. C., & Pistori, H. (2020). A new image dataset 

for the evaluation of automatic fingerlings counting. Aquacultural Engineering, 89, 102064. 

https://doi.org/10.1016/J.AQUAENG.2020.102064  

 García-Poza, S., Leandro, A., Cotas, C., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. 

M. M. (2020). The evolution road of seaweed aquaculture: Cultivation technologies and the 

industry 4.0. In International Journal of Environmental Research and Public Health (Vol. 17, 

Issue 18, pp. 1–42). MDPI AG. https://doi.org/10.3390/ijerph17186528  

 Geers, R., & Madec, F. (2006). Livestock production and society. In Livestock Production and 

Society. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-567-3  

 Gentry, R. R., Lester, S. E., Kappel, C. V., White, C., Bell, T. W., Stevens, J., & Gaines, S. D. (2017). 

Offshore aquaculture: Spatial planning principles for sustainable development. In Ecology 

and Evolution (Vol. 7, Issue 2, pp. 733–743). John Wiley and Sons Ltd. 

https://doi.org/10.1002/ece3.2637  

 Georgopoulou, D. G., Stavrakidis-Zachou, O., Mitrizakis, N., & Papandroulakis, N. (2021). 

Tracking and Analysis of the Movement Behavior of European Seabass (Dicentrarchus labrax) 

https://doi.org/10.3389/fmars.2021.666583
https://doi.org/10.1016/j.aquaculture.2023.739920
https://doi.org/10.1016/j.compag.2011.02.003
https://doi.org/10.1016/j.aquaculture.2016.06.045
https://doi.org/10.1016/j.biosystemseng.2017.10.014
https://doi.org/10.3390/su11030637
https://doi.org/10.1016/J.AQUAENG.2020.102051
https://doi.org/10.1016/J.AQUAENG.2020.102064
https://doi.org/10.3390/ijerph17186528
https://doi.org/10.3920/978-90-8686-567-3
https://doi.org/10.1002/ece3.2637


 

62 of 76 

in Aquaculture Systems. Frontiers in Animal Science, 2. 

https://doi.org/10.3389/fanim.2021.754520  

 Gernez, P., Doxaran, D., & Barillé, L. (2017). Shellfish aquaculture from Space: Potential of 

Sentinel2 to monitor tide-driven changes in turbidity, chlorophyll concentration and oyster 

physiological response at the scale of an oyster farm. Frontiers in Marine Science, 4(MAY). 

https://doi.org/10.3389/fmars.2017.00137  

 Gorbunova, A. V, Kostin, V. E., Pashkevich, I. L., Rybanov, A. A., Savchits, A. V, Silaev, A. A., 

Silaeva, E. Y., & Judaev, Y. V. (2020). Prospects and opportunities for the introduction of digital 

technologies into aquaculture governance system. IOP Conference Series: Earth and 

Environmental Science, 422(1), 012125. https://doi.org/10.1088/1755-1315/422/1/012125  

 Gratacap, R. L., Wargelius, A., Edvardsen, R. B., & Houston, R. D. (2019). Potential of Genome 

Editing to Improve Aquaculture Breeding and Production. In Trends in Genetics (Vol. 35, Issue 

9, pp. 672–684). Elsevier Ltd. https://doi.org/10.1016/j.tig.2019.06.006  

 Groetsch, P. M. M., Gege, P., Simis, S. G. H., Eleveld, M. A., & Peters, S. W. M. (2017). Validation 

of a spectral correction procedure for sun and sky reflections in above-water reflectance 

measurements. Optics Express, 25(16), A742. https://doi.org/10.1364/oe.25.00a742  

 Gutenko, D. (2020). State of the art of soft robotic applications based on magneto-

rheological materials. MATEC Web of Conferences, 322, 01050. 

https://doi.org/10.1051/matecconf/202032201050  

 Halide, H., Stigebrandt, A., Rehbein, M., & McKinnon, A. D. (2009). Developing a decision 

support system for sustainable cage aquaculture. Environmental Modelling and Software, 

24(6), 694–702. https://doi.org/10.1016/j.envsoft.2008.10.013  

 Hassan, S. G., Hasan, M., & Li, D. (2016). Information fusion in aquaculture: A state-of the art 

review. In Frontiers of Agricultural Science and Engineering (Vol. 3, Issue 3, pp. 206–221). Higher 

Education Press Limited Company. https://doi.org/10.15302/J-FASE-2016111  

 Hathurusingha, P. I., & Davey, K. R. (2014). A predictive model for taste taint accumulation in 

Recirculating Aquaculture Systems (RAS) farmed-fish - demonstrated with geosmin (GSM) 

and 2-methylisoborneol (MIB). Ecological Modelling, 291, 242–249. 

https://doi.org/10.1016/j.ecolmodel.2014.08.009  

 Hernández-Ontiveros, J. M., Inzunza-González, E., García-Guerrero, E. E., López-Bonilla, O. R., 

Infante-Prieto, S. O., Cárdenas-Valdez, J. R., & Tlelo-Cuautle, E. (2018). Development and 

implementation of a fish counter by using an embedded system. Computers and Electronics 

in Agriculture, 145, 53–62. https://doi.org/10.1016/j.compag.2017.12.023  

 Hobday, A. J., Spillman, C. M., Paige Eveson, J., & Hartog, J. R. (2016). Seasonal forecasting 

for decision support in marine fisheries and aquaculture. Fisheries Oceanography, 25, 45–56. 

https://doi.org/10.1111/fog.12083  

 Hossain, P. R., Amjath-Babu, T. S., Krupnik, T. J., Braun, M., Mohammed, E. Y., & Phillips, M. 

(2021). Developing Climate Information Services for Aquaculture in Bangladesh: A Decision 

Framework for Managing Temperature and Rainfall Variability-Induced Risks. Frontiers in 

Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.677069  

 Huang, L., Li, Z., Li, S., Liu, L., & Shi, Y. (2020). Design and application of a free and lightweight 

aquaculture water quality detection robot. Journal Europeen Des Systemes Automatises, 

53(1), 111–122. https://doi.org/10.18280/jesa.530114  

https://doi.org/10.3389/fanim.2021.754520
https://doi.org/10.3389/fmars.2017.00137
https://doi.org/10.1088/1755-1315/422/1/012125
https://doi.org/10.1016/j.tig.2019.06.006
https://doi.org/10.1364/oe.25.00a742
https://doi.org/10.1051/matecconf/202032201050
https://doi.org/10.1016/j.envsoft.2008.10.013
https://doi.org/10.15302/J-FASE-2016111
https://doi.org/10.1016/j.ecolmodel.2014.08.009
https://doi.org/10.1016/j.compag.2017.12.023
https://doi.org/10.1111/fog.12083
https://doi.org/10.3389/fsufs.2021.677069
https://doi.org/10.18280/jesa.530114


 

63 of 76 

 Isola, T. E., Gil, D. G., Marcinkevicius, M. S., Zaixso, H. E., & Cazzaniga, N. J. (2023). Temporal 

and small-scale spatial variation in spatfall of the mussel Mytilus edulis platensis: Basis for 

culture management at San Jorge Gulf, Patagonia Argentina. Aquacultural Engineering, 103. 

https://doi.org/10.1016/j.aquaeng.2023.102362  

 Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., 

Kristjansson, J. E., Medhaug, I., Sand, M., & Seierstad, I. A. (2013). The Norwegian Earth System 

Model, NorESM1-M – Part 2: Climate response and scenario projections. Geoscientific Model 

Development, 6(2), 389–415. https://doi.org/10.5194/gmd-6-389-2013  

 Iversen, T., & Kirkevåg, A. (2012). The Norwegian Earth System Model, NorESM1-M-Part 2: 

Climate response and scenario projections. Geoscientific Model Development Discussion, 5, 

2933–2998. https://doi.org/10.5194/gmdd-5-2933-2012  

 Izadi, M., Sultan, M., Kadiri, R. El, Ghannadi, A., & Abdelmohsen, K. (2021). A remote sensing 

and machine learning-based approach to forecast the onset of harmful algal bloom. 

Remote Sensing, 13(19). https://doi.org/10.3390/rs13193863  

 Jæger, B., & Mishra, A. (2020). Iot platform for seafood farmers and consumers. Sensors 

(Switzerland), 20(15), 1–15. https://doi.org/10.3390/s20154230  

 James, S. C., Zhang, Y., & O’Donncha, F. (2018). A machine learning framework to forecast 

wave conditions. Coastal Engineering, 137, 1–10. 

https://doi.org/10.1016/j.coastaleng.2018.03.004  

 Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient 

wireless sensor networks for precision agriculture: A review. In Sensors (Switzerland) (Vol. 17, 

Issue 8). MDPI AG. https://doi.org/10.3390/s17081781  

 Kandrot, S., Hayes, S., & Holloway, P. (2022). Applications of Uncrewed Aerial Vehicles (UAV) 

Technology to Support Integrated Coastal Zone Management and the UN Sustainable 

Development Goals at the Coast. In Estuaries and Coasts (Vol. 45, Issue 5, pp. 1230–1249). 

Springer. https://doi.org/10.1007/s12237-021-01001-5  

 Kang, J., Sui, L., Yang, X., Liu, Y., Wang, Z., Wang, J., Yang, F., Liu, B., & Ma, Y. (2019). Sea 

surface-visible aquaculture spatial-temporal distribution remote sensing: A case study in 

Liaoning Province, China from 2000 to 2018. Sustainability (Switzerland), 11(24). 

https://doi.org/10.3390/SU11247186  

 Kassem, T., Shahrour, I., El Khatabi, J., & Raslan, A. (2021). Smart and sustainable aquaculture 

farms. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910685  

 Kim, H., Kang, D., Cho, S., Kim, M., Park, J., & Kim, K. (2018). Acoustic target strength 

measurements for biomass estimation of aquaculture fish, Redlip mullet (Chelon 

haematocheilus). Applied Sciences (Switzerland), 8(9). https://doi.org/10.3390/app8091536  

 Koh, M. E., Fong, M. W. K., & Ng, E. Y. K. (2023). Aqua3DNet: Real-time 3D pose estimation of 

livestock in aquaculture by monocular machine vision. Aquacultural Engineering, 103. 

https://doi.org/10.1016/j.aquaeng.2023.102367  

 Kumar, G., Engle, C., & Tucker, C. (2018). Factors Driving Aquaculture Technology Adoption. 

In Journal of the World Aquaculture Society (Vol. 49, Issue 3, pp. 447–476). Blackwell Publishing 

Inc. https://doi.org/10.1111/jwas.12514  

https://doi.org/10.1016/j.aquaeng.2023.102362
https://doi.org/10.5194/gmd-6-389-2013
https://doi.org/10.5194/gmdd-5-2933-2012
https://doi.org/10.3390/rs13193863
https://doi.org/10.3390/s20154230
https://doi.org/10.1016/j.coastaleng.2018.03.004
https://doi.org/10.3390/s17081781
https://doi.org/10.1007/s12237-021-01001-5
https://doi.org/10.3390/SU11247186
https://doi.org/10.3390/su131910685
https://doi.org/10.3390/app8091536
https://doi.org/10.1016/j.aquaeng.2023.102367
https://doi.org/10.1111/jwas.12514


 

64 of 76 

 Kumar, U., Werners, S., Roy, S., Ashraf, S., Hoang, L. P., Datta, D. K., & Ludwig, F. (2020). Role of 

information in farmers’ response toweather and water related stresses in the lower Bengal 

Delta, Bangladesh. Sustainability (Switzerland), 12(16). https://doi.org/10.3390/su12166598  

 Lan, H. Y., Ubina, N. A., Cheng, S. C., Lin, S. S., & Huang, C. T. (2023). Digital Twin Architecture 

Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. 

Applied Sciences (Switzerland), 13(1). https://doi.org/10.3390/app13010141  

 Le, J., & Xu, L. (2017). An Automated Fish Counting Algorithm in Aquaculture Based on Image 

Processing. Advances in Engineering Research, 113, 358–366. https://doi.org/10.2991/IFMCA-

16.2017.56  

 Lee, J. V., Loo, J. L., Chuah, Y. D., Tang, P. Y., Tan, Y. C., & Goh, W. J. (2013). The use of vision 

in a sustainable aquaculture feeding system. Research Journal of Applied Sciences, 

Engineering and Technology, 6(19), 3658–3669. https://doi.org/10.19026/RJASET.6.3573  

 Leonardo, S., Toldrà, A., & Campàs, M. (2021). Biosensors based on isothermal DNA 

amplification for bacterial detection in food safety and environmentalmonitoring. Sensors 

(Switzerland), 21(2), 1–24. https://doi.org/10.3390/s21020602  

 Li, D., Li, X., Wang, Q., & Hao, Y. (2022). Advanced Techniques for the Intelligent Diagnosis of 

Fish Diseases: A Review. In Animals (Vol. 12, Issue 21). MDPI. 

https://doi.org/10.3390/ani12212938  

 Liang, W. Y., & Juang, J. G. (2022). Application of image identification to UAV control for cage 

culture. Science Progress, 105(4). https://doi.org/10.1177/00368504221135450  

 Lim, H. R., Khoo, K. S., Chia, W. Y., Chew, K. W., Ho, S. H., & Show, P. L. (2022). Smart microalgae 

farming with internet-of-things for sustainable agriculture. In Biotechnology Advances (Vol. 

57). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2022.107931  

 Lim, L. W. K. (2023). Implementation of Artificial Intelligence in Aquaculture and Fisheries: Deep 

Learning, Machine Vision, Big Data, Internet of Things, Robots and Beyond. Journal of 

Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE3202803  

 Lin, J. Y., Tsai, H. L., & Lyu, W. H. (2021). An integrated wireless multi-sensor system for monitoring 

the water quality of aquaculture. Sensors, 21(24). https://doi.org/10.3390/s21248179  

 Liu, C., Wang, Z., Li, Y., Zhang, Z., Li, J., Xu, C., Du, R., Li, D., & Duan, Q. (2023). Research progress 

of computer vision technology in abnormal fish detection. In Aquacultural Engineering (Vol. 

103). Elsevier B.V. https://doi.org/10.1016/j.aquaeng.2023.102350  

 Liu, H., Ma, X., Yu, Y., Wang, L., & Hao, L. (2023). Application of Deep Learning-Based Object 

Detection Techniques in Fish Aquaculture: A Review. In Journal of Marine Science and 

Engineering (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/jmse11040867  

 Liu, J. M., Setiazi, H., & Borazon, E. Q. (2022). Hydroacoustic assessment of standing stock of 

Nile tilapia (Oreochromis niloticus) under 120 kHz and 200 kHz split-beam systems in an 

aquaculture pond. Aquaculture Research, 53(3), 820–831. https://doi.org/10.1111/are.15618  

 Liu, X. G., Shao, Z., Cheng, G., Lu, S., Gu, Z., Zhu, H., Shen, H., Wang, J., & Chen, X. (2021). 

Ecological engineering in pond aquaculture: a review from the whole-process perspective in 

China. In Reviews in Aquaculture (Vol. 13, Issue 2, pp. 1060–1076). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12512  

https://doi.org/10.3390/su12166598
https://doi.org/10.3390/app13010141
https://doi.org/10.2991/IFMCA-16.2017.56
https://doi.org/10.2991/IFMCA-16.2017.56
https://doi.org/10.19026/RJASET.6.3573
https://doi.org/10.3390/s21020602
https://doi.org/10.3390/ani12212938
https://doi.org/10.1177/00368504221135450
https://doi.org/10.1016/j.biotechadv.2022.107931
https://doi.org/10.47852/bonviewJCCE3202803
https://doi.org/10.3390/s21248179
https://doi.org/10.1016/j.aquaeng.2023.102350
https://doi.org/10.3390/jmse11040867
https://doi.org/10.1111/are.15618
https://doi.org/10.1111/raq.12512


 

65 of 76 

 Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud computing 

adoption. Industrial Management and Data Systems, 111(7), 1006–1023. 

https://doi.org/10.1108/02635571111161262  

 Luna, M., Llorente, I., & Cobo, Á. (2019). Integration of environmental sustainability and 

product quality criteria in the decision-making process for feeding strategies in seabream 

aquaculture companies. Journal of Cleaner Production, 217, 691–701. 

https://doi.org/10.1016/j.jclepro.2019.01.248  

 Luo, G., Zhang, N., Tan, H., Hou, Z., & Liu, W. (2017). Efficiency of producing bioflocs with 

aquaculture waste by using poly-β-hydroxybutyric acid as a carbon source in suspended 

growth bioreactors. Aquacultural Engineering, 76, 34–40. 

https://doi.org/10.1016/j.aquaeng.2017.01.001  

 Ma, Y., Qu, X., Yu, C., Wu, L., Zhang, P., Huang, H., Gui, F., & Feng, D. (2022). Automatic 

Extraction of Marine Aquaculture Zones from Optical Satellite Images by R3Det with Piecewise 

Linear Stretching. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184430  

 Marini, S., Fanelli, E., Sbragaglia, V., Azzurro, E., Del Rio Fernandez, J., & Aguzzi, J. (2018). 

Tracking Fish Abundance by Underwater Image Recognition. Scientific Reports, 8(1). 

https://doi.org/10.1038/s41598-018-32089-8  

 Marino, R., Petrera, F., & Abeni, F. (2023). Scientific Productions on Precision Livestock Farming: 

An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. 

In Animals (Vol. 13, Issue 14). Multidisciplinary Digital Publishing Institute (MDPI). 

https://doi.org/10.3390/ani13142280  

 Mathisen, B. M., Haro, P., Hanssen, B., Björk, S., & Walderhaug, S. (2016). Decision Support 

Systems in Fisheries and Aquaculture: A systematic review. http://arxiv.org/abs/1611.08374  

 McCarthy, M. J., Colna, K. E., El-Mezayen, M. M., Laureano-Rosario, A. E., Méndez-Lázaro, P., 

Otis, D. B., Toro-Farmer, G., Vega-Rodriguez, M., & Muller-Karger, F. E. (2017). Satellite Remote 

Sensing for Coastal Management: A Review of Successful Applications. Environmental 

Management, 60(2), 323–339. https://doi.org/10.1007/s00267-017-0880-x  

 Meyer, A., Bannister-Tyrrell, M., Mackenzie, C., Stegeman, A., & Cameron, A. (2020). Barriers 

to the adoption of a fish health data integration initiative in the Chilean salmonid production. 

Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105853  

 Mileti, A., Arduini, D., Watson, G., & Giangrande, A. (2023). Blockchain Traceability in Trading 

Biomasses Obtained with an Integrated Multi-Trophic Aquaculture. Sustainability 

(Switzerland), 15(1). https://doi.org/10.3390/su15010767  

 Miranda, J. M., & Romero, M. (2017). A prototype to measure rainbow trout’s length using 

image processing. Aquacultural Engineering, 76, 41–49. 

https://doi.org/10.1016/J.AQUAENG.2017.01.003  

 Mustafa, S., M. Shaleh, S. R., Shapawi, R., Estim, A., Fui Fui, C., Ag. Ibrahim, Ag. A., Tuzan, A. D., 

Seng, L. L., Ann, C. C., Jimat, A., & Japar, B. (2021). Application of Fourth Industrial Revolution 

Technologies to Marine Aquaculture for Future Food: Imperatives, Challenges and Prospects. 

Sustainable Marine Structures, 3(1), 22–31. https://doi.org/10.36956/sms.v3i1.378  

 Mustapha, U. F., Alhassan, A. W., Jiang, D. N., & Li, G. L. (2021). Sustainable aquaculture 

development: a review on the roles of cloud computing, internet of things and artificial 

https://doi.org/10.1108/02635571111161262
https://doi.org/10.1016/j.jclepro.2019.01.248
https://doi.org/10.1016/j.aquaeng.2017.01.001
https://doi.org/10.3390/rs14184430
https://doi.org/10.1038/s41598-018-32089-8
https://doi.org/10.3390/ani13142280
http://arxiv.org/abs/1611.08374
https://doi.org/10.1007/s00267-017-0880-x
https://doi.org/10.1016/j.compag.2020.105853
https://doi.org/10.3390/su15010767
https://doi.org/10.1016/J.AQUAENG.2017.01.003
https://doi.org/10.36956/sms.v3i1.378


 

66 of 76 

intelligence (CIA). In Reviews in Aquaculture (Vol. 13, Issue 4, pp. 2076–2091). John Wiley and 

Sons Inc. https://doi.org/10.1111/raq.12559  

 Nagamora, J. A., Angeles, S. C. H., Vertudes, S., Balangao, J. K. B., & Abdullah II, A. H. S. (2022). 

An Assessment of the Control and Monitoring Functionalities of a Developed Small-Scale 

Aquaculture System. International Journal of Biosciences (IJB), 21(4), 89–100. 

https://doi.org/10.12692/ijb/21.4.89-100  

 Neethirajan, S., & Kemp, B. (2021). Digital twins in livestock farming. In Animals (Vol. 11, Issue 

4). MDPI AG. https://doi.org/10.3390/ani11041008  

 Njoku, C., Etim-Inyang, I., Itu, P. C., & Uzoezie, A. (2022). Geospatial Assessment of Site 

Suitability for Tilapia Cage Culture in Cross River State, Nigeria. Sarhad Journal of Agriculture, 

38(2), 456–469. https://doi.org/10.17582/JOURNAL.SJA/2022/38.2.456.469  

 O’Donncha, F., Akhriev, A., Eck, B., Burke, M., Filgueira, R., & Grant, J. (2021). Deployment and 

Management of Time Series Forecasts in Ocean Industry. Proceedings - 2021 IEEE International 

Conference on Big Data, Big Data 2021, 4091–4096. 

https://doi.org/10.1109/BigData52589.2021.9671877  

 O’Donncha, F., & Grant, J. (2020). Precision Aquaculture. IEEE Internet of Things Magazine, 

2(4), 26–30. https://doi.org/10.1109/iotm.0001.1900033  

 O’Donncha, F., Stockwell, C. L., Planellas, S. R., Micallef, G., Palmes, P., Webb, C., Filgueira, R., 

& Grant, J. (2021). Data Driven Insight Into Fish Behaviour and Their Use for Precision 

Aquaculture. Frontiers in Animal Science, 2. https://doi.org/10.3389/fanim.2021.695054  

 Ottinger, M., Clauss, K., & Kuenzer, C. (2017). Large-scale assessment of coastal aquaculture 

ponds with Sentinel-1 time series data. Remote Sensing, 9(5). 

https://doi.org/10.3390/rs9050440  

 Ottinger, M., Clauss, K., & Kuenzer, C. (2018). Opportunities and challenges for the estimation 

of aquaculture production based on earth observation data. Remote Sensing, 10(7). 

https://doi.org/10.3390/rs10071076  

 Palmer, S. C. J., Gernez, P. M., Thomas, Y., Simis, S., Miller, P. I., Glize, P., & Barillé, L. (2020). 

Remote Sensing-Driven Pacific Oyster (Crassostrea gigas) Growth Modeling to Inform Offshore 

Aquaculture Site Selection. Frontiers in Marine Science, 6. 

https://doi.org/10.3389/fmars.2019.00802  

 Panudju, A. T., Rahardja, S., Nurilmala, M., & Marimin. (2023). Decision Support System in 

Fisheries Industry: Current State and Future Agenda. International Journal on Advanced 

Science, Engineering and Information Technology, 13(2), 599–610. 

https://doi.org/10.18517/ijaseit.13.2.17914  

 Papanikolaou, V. K., Tegos, S. A., Bouzinis, P. S., Tyrovolas, D., Diamantoulakis, P. D., & 

Karagiannidis, G. K. (2022). ATLAS: Internet of Things Platform for Precision Aquaculture. 2022 

Panhellenic Conference on Electronics and Telecommunications, PACET 2022. 

https://doi.org/10.1109/PACET56979.2022.9976375  

 Parra, L., Lloret, G., Lloret, J., & Rodilla, M. (2018). Physical Sensors for Precision Aquaculture: A 

Review. IEEE Sensors Journal, 18(10), 3915–3923. https://doi.org/10.1109/JSEN.2018.2817158  

https://doi.org/10.1111/raq.12559
https://doi.org/10.12692/ijb/21.4.89-100
https://doi.org/10.3390/ani11041008
https://doi.org/10.17582/JOURNAL.SJA/2022/38.2.456.469
https://doi.org/10.1109/BigData52589.2021.9671877
https://doi.org/10.1109/iotm.0001.1900033
https://doi.org/10.3389/fanim.2021.695054
https://doi.org/10.3390/rs9050440
https://doi.org/10.3390/rs10071076
https://doi.org/10.3389/fmars.2019.00802
https://doi.org/10.18517/ijaseit.13.2.17914
https://doi.org/10.1109/PACET56979.2022.9976375
https://doi.org/10.1109/JSEN.2018.2817158


 

67 of 76 

 Parra, L., Sendra, S., García, L., & Lloret, J. (2018). Design and deployment of low-cost sensors 

for monitoring the water quality and fish behavior in aquaculture tanks during the feeding 

process. Sensors (Switzerland), 18(3). https://doi.org/10.3390/s18030750  

 Pavlidis, M., Digka, N., Theodoridi, A., Campo, A., Barsakis, K., Skouradakis, G., Samaras, A., & 

Tsalafouta, A. (2013). Husbandry of zebrafish, danio rerio, and the cortisol stress response. 

Zebrafish, 10(4), 524–531. https://doi.org/10.1089/zeb.2012.0819  

 Peres, C., Emam, M., Jafarzadeh, H., Belcastro, M., & O’flynn, B. (2021). Development of a low-

power underwater nfc-enabled sensor device for seaweed monitoring. Sensors, 21(14). 

https://doi.org/10.3390/s21144649  

 Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing 

approaches for monitoring mangrove species, structure, and biomass: Opportunities and 

challenges. In Remote Sensing (Vol. 11, Issue 3). MDPI AG. https://doi.org/10.3390/rs11030230  

 Piedecausa, M. A., Aguado-Giménez, F., Cerezo-Valverde, J., Hernández-Llorente, M. D., & 

García-García, B. (2010). Simulating the temporal pattern of waste production in farmed 

gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic 

bluefin tuna (Thunnus thynnus). Ecological Modelling, 221(4), 634–640. 

https://doi.org/10.1016/j.ecolmodel.2009.11.011   

 Pizarro, G., Moroño, Á., Paz, B., Franco, J. M., Pazos, Y., & Reguera, B. (2013). Evaluation of 

passive samplers as a monitoring tool for early warning of dinophysis toxins in shellfish. Marine 

Drugs, 11(10), 3823–3845. https://doi.org/10.3390/md11103823  

 Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., 

Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., & Trianni, G. 

(2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing 

of Environment, 113(SUPPL. 1). https://doi.org/10.1016/j.rse.2007.07.028  

 Pramana, R., Suprapto, B. Y., & Nawawi, Z. (2021). Remote Water Quality Monitoring with Early 

-Warning System for Marine Aquaculture. E3S Web of Conferences, 324. 

https://doi.org/10.1051/e3sconf/202132405007  

 Prapti, D. R., Mohamed Shariff, A. R., Che Man, H., Ramli, N. M., Perumal, T., & Shariff, M. (2022). 

Internet of Things (IoT)-based aquaculture: An overview of IoT application on water quality 

monitoring. In Reviews in Aquaculture (Vol. 14, Issue 2, pp. 979–992). John Wiley and Sons Inc. 

https://doi.org/10.1111/raq.12637  

 Ranjan, R., Sharrer, K., Tsukuda, S., & Good, C. (2023). MortCam: An Artificial Intelligence-

aided fish mortality detection and alert system for recirculating aquaculture. Aquacultural 

Engineering, 102. https://doi.org/10.1016/j.aquaeng.2023.102341  

 Ranjbar, R., & Abdalla, A. H. (2017). Development of an autonomous remote access water 

quality monitoring system. Indonesian Journal of Electrical Engineering and Computer 

Science, 8(2), 467–474. https://doi.org/10.11591/ijeecs.v8.i2.pp467-474  

 Rastegari, H., Nadi, F., Lam, S. S., Ikhwanuddin, M., Kasan, N. A., Rahmat, R. F., & Mahari, W. 

A. W. (2023). Internet of Things in aquaculture: A review of the challenges and potential 

solutions based on current and future trends. In Smart Agricultural Technology (Vol. 4). Elsevier 

B.V. https://doi.org/10.1016/j.atech.2023.100187  

https://doi.org/10.3390/s18030750
https://doi.org/10.1089/zeb.2012.0819
https://doi.org/10.3390/s21144649
https://doi.org/10.3390/rs11030230
https://doi.org/10.1016/j.ecolmodel.2009.11.011
https://doi.org/10.3390/md11103823
https://doi.org/10.1016/j.rse.2007.07.028
https://doi.org/10.1051/e3sconf/202132405007
https://doi.org/10.1111/raq.12637
https://doi.org/10.1016/j.aquaeng.2023.102341
https://doi.org/10.11591/ijeecs.v8.i2.pp467-474
https://doi.org/10.1016/j.atech.2023.100187


 

68 of 76 

 Rokade, A., Singh, M., Malik, P. K., Singh, R., & Alsuwian, T. (2022). Intelligent Data Analytics 

Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms. 

Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199992  

 Ross, L. G., Falconer, L. L., Campos Mendoza, A., & Martinez Palacios, C. A. (2011). Spatial 

modelling for freshwater cage location in the Presa Adolfo Mateos Lopez (El Infiernillo), 

Michoacán, México. Aquaculture Research, 42(6), 797–807. https://doi.org/10.1111/j.1365-

2109.2010.02689.x  

 Royer, E., & Pastres, R. (2023). Data assimilation as a key step towards the implementation of 

an efficient management of dissolved oxygen in land-based aquaculture. Aquaculture 

International, 31(3), 1287–1301. https://doi.org/10.1007/s10499-022-01028-w  

 Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Invited review: Sensors 

to support health management on dairy farms. Journal of Dairy Science, 96(4), 1928–1952. 

https://doi.org/10.3168/jds.2012-6107  

 Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A., & Urban, J. (2017). Application of 

machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. 

In Reviews in Aquaculture (Vol. 9, Issue 4, pp. 369–387). Wiley-Blackwell. 

https://doi.org/10.1111/raq.12143  

 Schmidt, W., Raymond, D., Parish, D., Ashton, I. G. C., Miller, P. I., Campos, C. J. A., & Shutler, 

J. D. (2018). Design and operation of a low-cost and compact autonomous buoy system for 

use in coastal aquaculture and water quality monitoring. Aquacultural Engineering, 80, 28–

36. https://doi.org/10.1016/j.aquaeng.2017.12.002  

 Sendra, S., Lloret, J., Jimenez, J. M., & Parra, L. (2016). Underwater Acoustic Modems. IEEE 

Sensors Journal, 16(11), 4063–4071. https://doi.org/10.1109/JSEN.2015.2434890  

 Shinn, A. P., Pratoomyot, J., Bron, J. E., Paladini, G., Brooker, E. E., & Brooker, A. J. (2015). 

Economic costs of protistan and metazoan parasites to global mariculture. In Parasitology 

(Vol. 142, Issue 1, pp. 196–270). Cambridge University Press. 

https://doi.org/10.1017/S0031182014001437  

 Skøien, K. R., Aas, T. S., Alver, M. O., Romarheim, O. H., & Alfredsen, J. A. (2016). Intrinsic settling 

rate and spatial diffusion properties of extruded fish feed pellets. Aquacultural Engineering, 

74, 30–37. https://doi.org/10.1016/j.aquaeng.2016.05.001  

 Snyder, J., Boss, E., Weatherbee, R., Thomas, A. C., Brady, D., & Newell, C. (2017). Oyster 

aquaculture site selection using landsat 8-derived sea surface temperature, turbidity, and 

chlorophyll a. Frontiers in Marine Science, 4(JUN). https://doi.org/10.3389/fmars.2017.00190  

 Song, C., Shao, Y., Song, S., Peng, S., Zhou, F., Chang, C., & Wang, D. (2017). Insulation 

resistance monitoring algorithm for battery pack in electric vehicle based on extended 

Kalman filtering. Energies, 10(5). https://doi.org/10.3390/en10050714  

 Stavrakidis-Zachou, O., Lika, K., Anastasiadis, P., & Papandroulakis, N. (2021). Projecting 

climate change impacts on Mediterranean finfish production: a case study in Greece. 

Climatic Change, 165(3–4). https://doi.org/10.1007/s10584-021-03096-y  

 Stavrakidis-Zachou, O., Papandroulakis, N., & Lika, K. (2019). A DEB model for European sea 

bass (Dicentrarchus labrax): Parameterisation and application in aquaculture. Journal of Sea 

Research, 143, 262–271. https://doi.org/10.1016/j.seares.2018.05.008  

https://doi.org/10.3390/app12199992
https://doi.org/10.1111/j.1365-2109.2010.02689.x
https://doi.org/10.1111/j.1365-2109.2010.02689.x
https://doi.org/10.1007/s10499-022-01028-w
https://doi.org/10.3168/jds.2012-6107
https://doi.org/10.1111/raq.12143
https://doi.org/10.1016/j.aquaeng.2017.12.002
https://doi.org/10.1109/JSEN.2015.2434890
https://doi.org/10.1017/S0031182014001437
https://doi.org/10.1016/j.aquaeng.2016.05.001
https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.3390/en10050714
https://doi.org/10.1007/s10584-021-03096-y
https://doi.org/10.1016/j.seares.2018.05.008


 

69 of 76 

 Stavrakidis-Zachou, O., Papandroulakis, N., Sturm, A., Anastasiadis, P., Wätzold, F., & Lika, K. 

(2018). Towards a computer-based decision support system for aquaculture stakeholders in 

Greece in the context of climate change. International Journal of Sustainable Agricultural 

Management and Informatics, 4(3–4), 219–234. https://doi.org/10.1504/IJSAMI.2018.099235  

 Stavrakidis-Zachou, O., Sturm, A., Lika, K., Wätzold, F., & Papandroulakis, N. (2021). 

ClimeGreAq: A software-based DSS for the climate change adaptation of Greek 

aquaculture. Environmental Modelling and Software, 143. 

https://doi.org/10.1016/j.envsoft.2021.105121  

 Su, B., Kelasidi, E., Frank, K., Haugen, J., Føre, M., & Pedersen, M. O. (2021). An integrated 

approach for monitoring structural deformation of aquaculture net cages. Ocean 

Engineering, 219. https://doi.org/10.1016/j.oceaneng.2020.108424  

 Su, X., Sutarlie, L., & Loh, X. J. (2020). Sensors, Biosensors, and Analytical Technologies for 

Aquaculture Water Quality. Research, 2020. https://doi.org/10.34133/2020/8272705  

 Suciu, I., Boquet, G., Tuset-Peiró, P., & Vilajosana, X. (2022). ADO: An open digital end-to-end 

tank based aquaculture platform. https://doi.org/10.17632/cvdc3gsjsg.1  

 Sun, N., Fan, B., Ding, Y., Liu, Y., Bi, Y., Seglah, P. A., & Gao, C. (2023). Analysis of the 

Development Status and Prospect of China’s Agricultural Sensor Market under Smart 

Agriculture. Sensors, 23(6). https://doi.org/10.3390/s23063307  

 Sun, Y., Li, H., Fan, C., Yan, B., Chen, J., Yan, Z., & Sun, Q. (2022). Review of a Specialty Fiber 

for Distributed Acoustic Sensing Technology. In Photonics (Vol. 9, Issue 5). MDPI. 

https://doi.org/10.3390/photonics9050277  

 Tamim, A. T., Begum, H., Shachcho, S. A., Khan, M. M., Yeboah-Akowuah, B., Masud, M., & Al-

Amri, J. F. (2022). Development of IoT Based Fish Monitoring System for Aquaculture. Intelligent 

Automation and Soft Computing, 32(1), 55–71. https://doi.org/10.32604/IASC.2022.021559  

 Tanasichuk, R. W., Armstrong, C., & Ware, D. M. (1985). An improved photo-electric fish egg 

counter. Canadian Journal of Fisheries and Aquatic Sciences, 42(7), 1255–1258. 

https://doi.org/10.1139/F85-156  

 Tasnim, R., Shaikat, A. S., Al Amin, A., Hussein, M. R., & Rahman, M. M. (2022). Design of a Smart 

Biofloc Monitoring and Controlling System using IoT. Journal of Engineering Advancements, 

155–161. https://doi.org/10.38032/jea.2022.04.003  

 Teixeira, R. R., Puccinelli, J. B., Poersch, L., Pias, M. R., Oliveira, V. M., Janati, A., & Paris, M. 

(2021). Towards Precision Aquaculture: A High Performance, Cost-effective IoT approach. 

http://arxiv.org/abs/2105.11493  

 Terkula Iber, B., Manan, H., Abu Hasan, H., & Azman Kasan, N. (2022). Advances in 

Technologies towards Enhancing Shellfish Wellbeing for Optimum Aquaculture Production. 

Malaysian Fisheries Journal, 22, 40–49. https://www.researchgate.net/publication/371985939  

 Tolentino-Zondervan, F., Ngoc, P. T. A., & Roskam, J. L. (2023). Use cases and future prospects 

of blockchain applications in global fishery and aquaculture value chains. In Aquaculture 

(Vol. 565). Elsevier B.V. https://doi.org/10.1016/j.aquaculture.2022.739158  

 Tonachella, N., Martini, A., Martinoli, M., Pulcini, D., Romano, A., & Capoccioni, F. (2022). An 

affordable and easy-to-use tool for automatic fish length and weight estimation in 

mariculture. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19932-9  

https://doi.org/10.1504/IJSAMI.2018.099235
https://doi.org/10.1016/j.envsoft.2021.105121
https://doi.org/10.1016/j.oceaneng.2020.108424
https://doi.org/10.34133/2020/8272705
https://doi.org/10.17632/cvdc3gsjsg.1
https://doi.org/10.3390/s23063307
https://doi.org/10.3390/photonics9050277
https://doi.org/10.32604/IASC.2022.021559
https://doi.org/10.1139/F85-156
https://doi.org/10.38032/jea.2022.04.003
http://arxiv.org/abs/2105.11493
https://www.researchgate.net/publication/371985939
https://doi.org/10.1016/j.aquaculture.2022.739158
https://doi.org/10.1038/s41598-022-19932-9


 

70 of 76 

 Torisawa, S., Kadota, M., Komeyama, K., Suzuki, K., & Takagi, T. (2011). A digital stereo-video 

camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, 

Thunnus orientalis, cultured in a net cage. Aquatic Living Resources, 24(2), 107–112. 

https://doi.org/10.1051/alr/2011133  

 Torrissen, O., Jones, S., Asche, F., Guttormsen, A., Skilbrei, O. T., Nilsen, F., Horsberg, T. E., & 

Jackson, D. (2013). Salmon lice - impact on wild salmonids and salmon aquaculture. In Journal 

of Fish Diseases (Vol. 36, Issue 3, pp. 171–194). https://doi.org/10.1111/jfd.12061  

 Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P. H., Folke, C., Arrow, K. J., Barrett, 

S., Crépin, A. S., Ehrlich, P. R., Gren, Å., Kautsky, N., Levin, S. A., Nyborg, K., Österblom, H., 

Polasky, S., Scheffer, M., Walker, B. H., Xepapadeas, T., & De Zeeuw, A. (2014). Does 

aquaculture add resilience to the global food system? In Proceedings of the National 

Academy of Sciences of the United States of America (Vol. 111, Issue 37, pp. 13257–13263). 

National Academy of Sciences. https://doi.org/10.1073/pnas.1404067111  

 Ubina, N. A., & Cheng, S. C. (2022). A Review of Unmanned System Technologies with Its 

Application to Aquaculture Farm Monitoring and Management. In Drones (Vol. 6, Issue 1). 

MDPI. https://doi.org/10.3390/drones6010012  

 Ubina, N. A., Cheng, S. C., Chang, C. C., Cai, S. Y., Lan, H. Y., & Lu, H. Y. (2022). Intelligent 

Underwater Stereo Camera Design for Fish Metric Estimation Using Reliable Object Matching. 

IEEE Access, 10, 74605–74619. https://doi.org/10.1109/ACCESS.2022.3185753  

 Ubina, N. A., Cheng, S. C., Chen, H. Y., Chang, C. C., & Lan, H. Y. (2021). A visual aquaculture 

system using a cloud-based autonomous drones. Drones, 5(4). 

https://doi.org/10.3390/drones5040109  

 Valenti, W. C., Kimpara, J. M., Preto, B. de L., & Moraes-Valenti, P. (2018). Indicators of 

sustainability to assess aquaculture systems. Ecological Indicators, 88, 402–413. 

https://doi.org/10.1016/j.ecolind.2017.12.068  

 Vecchio, Y., Masi, M., & Adinolfi, F. (2023). From the AKAP to AKAIE model to assess the uptake 

of technological innovations in the aquaculture sector. In Reviews in Aquaculture (Vol. 15, 

Issue 2, pp. 772–784). John Wiley and Sons Inc. https://doi.org/10.1111/raq.12756  

 Vo, T. T. E., Ko, H., Huh, J. H., & Kim, Y. (2021). Overview of smart aquaculture system: Focusing 

on applications of machine learning and computer vision. In Electronics (Switzerland) (Vol. 

10, Issue 22). MDPI. https://doi.org/10.3390/electronics10222882  

 Von Borstel, F. D., Suárez, J., de la Rosa, E., & Gutiérrez, J. (2013). Feeding and water 

monitoring robot in aquaculture greenhouse. Industrial Robot: An International Journal, 40(1), 

10–19. https://doi.org/10.1108/01439911311294219  

 Wan, E. A., & Van Der Menve, R. (2000). The Unscented Kalman Filter for Nonlinear Estimation. 

Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and 

Control Symposium. https://doi.org/10.1109/asspcc.2000.882463 

 Wan, S., Zhao, K., Lu, Z., Li, J., Lu, T., & Wang, H. (2022). A Modularized IoT Monitoring System 

with Edge-Computing for Aquaponics. Sensors, 22(23). https://doi.org/10.3390/s22239260  

 Wang, C., Li, Z., Wang, T., Xu, X., Zhang, X., & Li, D. (2021). Intelligent fish farm—the future of 

aquaculture. In Aquaculture International (Vol. 29, Issue 6, pp. 2681–2711). Springer Science 

and Business Media Deutschland GmbH. https://doi.org/10.1007/s10499-021-00773-8  

https://doi.org/10.1051/alr/2011133
https://doi.org/10.1111/jfd.12061
https://doi.org/10.1073/pnas.1404067111
https://doi.org/10.3390/drones6010012
https://doi.org/10.1109/ACCESS.2022.3185753
https://doi.org/10.3390/drones5040109
https://doi.org/10.1016/j.ecolind.2017.12.068
https://doi.org/10.1111/raq.12756
https://doi.org/10.3390/electronics10222882
https://doi.org/10.1108/01439911311294219
https://doi.org/10.1109/asspcc.2000.882463
https://doi.org/10.3390/s22239260
https://doi.org/10.1007/s10499-021-00773-8


 

71 of 76 

 Wang, G., Hwang, J. N., Wallace, F., & Rose, C. (2019). Multi-scale fish segmentation 

refinement and missing shape recovery. IEEE Access, 7, 52836–52845. 

https://doi.org/10.1109/ACCESS.2019.2912612  

 Wang, J., & Chu, Z. (2022). Developing and testing a remotely operated vehicle with a seven-

function manipulator. Complex Engineering Systems. https://doi.org/10.20517/ces.2022.01  

 Wang, J., Yang, X., Wang, Z., Ge, D., & Kang, J. (2022). Monitoring Marine Aquaculture and 

Implications for Marine Spatial Planning—An Example from Shandong Province, China. 

Remote Sensing, 14(3). https://doi.org/10.3390/rs14030732  

 White, D. J., Svellingen, C., & Strachan, N. J. C. (2006). Automated measurement of species 

and length of fish by computer vision. Fisheries Research, 80(2–3), 203–210. 

https://doi.org/10.1016/j.fishres.2006.04.009  

 Wisniewska, D. M., Johnson, M., Beedholm, K., Wahlberg, M., & Madsen, P. T. (2012). Research 

article: Acoustic gaze adjustments during active target selection in echolocating porpoises. 

Journal of Experimental Biology, 215(24), 4358–4373. https://doi.org/10.1242/jeb.074013  

 Witthames, P. R., & Walker, M. G. (1987). An automated method for counting and sizing fish 

eggs. Journal of Fish Biology, 30(3), 225–235. https://doi.org/10.1111/J.1095-

8649.1987.TB05748.X  

 Wolff, S., O’Donncha, F., & Chen, B. (2020). Statistical and machine learning ensemble 

modelling to forecast sea surface temperature. Journal of Marine Systems, 208, 103347. 

https://doi.org/10.1016/J.JMARSYS.2020.103347  

 Wu, T. H., Huang, Y. I., & Chen, J. M. (2015). Development of an adaptive neural-based fuzzy 

inference system for feeding decision-making assessment in silver perch (Bidyanus bidyanus) 

culture. Aquacultural Engineering, 66, 41–51. https://doi.org/10.1016/j.aquaeng.2015.02.001  

 Wu, Y., Liu, J., Wei, Y., An, D., Duan, Y., Li, W., Li, B., Chen, Y., & Wei, Q. (2022). Intelligent control 

method of underwater inspection robot in netcage. Aquaculture Research, 53(5), 1928–1938. 

https://doi.org/10.1111/are.15721  

 Xu, W., Wang, P., Jiang, L., Xuan, K., Li, D., & Li, J. (2023). Intelligent recognition and behavior 

tracking of sea cucumber infected with Vibrio alginolyticus based on machine vision. 

Aquacultural Engineering, 103. https://doi.org/10.1016/j.aquaeng.2023.102368  

 Yalcuk, A., & Postalcioglu, S. (2015). Evaluation of pool water quality of trout farms by fuzzy 

logic: monitoring of pool water quality for trout farms. International Journal of Environmental 

Science and Technology, 12(5), 1503–1514. https://doi.org/10.1007/S13762-014-0536-9  

 Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish 

farming: applications, opportunities and challenges. In Reviews in Aquaculture (Vol. 13, Issue 

1, pp. 66–90). Wiley-Blackwell. https://doi.org/10.1111/raq.12464  

 Zhang, H., & Gui, F. (2023). The Application and Research of New Digital Technology in Marine 

Aquaculture. In Journal of Marine Science and Engineering (Vol. 11, Issue 2). MDPI. 

https://doi.org/10.3390/jmse11020401  

 Zhang, L., Li, B., Sun, X., Hong, Q., & Duan, Q. (2023). Intelligent fish feeding based on machine 

vision: A review. Biosystems Engineering, 231, 133–164. 

https://doi.org/10.1016/j.biosystemseng.2023.05.010  

https://doi.org/10.1109/ACCESS.2019.2912612
https://doi.org/10.20517/ces.2022.01
https://doi.org/10.3390/rs14030732
https://doi.org/10.1016/j.fishres.2006.04.009
https://doi.org/10.1242/jeb.074013
https://doi.org/10.1111/J.1095-8649.1987.TB05748.X
https://doi.org/10.1111/J.1095-8649.1987.TB05748.X
https://doi.org/10.1016/J.JMARSYS.2020.103347
https://doi.org/10.1016/j.aquaeng.2015.02.001
https://doi.org/10.1111/are.15721
https://doi.org/10.1016/j.aquaeng.2023.102368
https://doi.org/10.1007/S13762-014-0536-9
https://doi.org/10.1111/raq.12464
https://doi.org/10.3390/jmse11020401
https://doi.org/10.1016/j.biosystemseng.2023.05.010


 

72 of 76 

 Zhang, R., Wang, Z., Li, X., She, Z., & Wang, B. (2023). Water Quality Sampling and Multi-

Parameter Monitoring System Based on Multi-Rotor UAV Implementation. Water (Switzerland), 

15(11). https://doi.org/10.3390/w15112129  

 Zheng, X., & Zhang, Y. (2010). A fish population counting method using fuzzy artificial neural 

network. Proceedings of the 2010 IEEE International Conference on Progress in Informatics 

and Computing, PIC 2010, 1, 225–228. https://doi.org/10.1109/PIC.2010.5687462  

 Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., & Yang, X. (2018). Near infrared computer 

vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. 

Computers and Electronics in Agriculture, 146, 114–124. 

https://doi.org/10.1016/j.compag.2018.02.006  

 Zhu, J., White, C., Wainwright, D. K., Santo, V. Di, Lauder, G. V, & Bart-Smith, H. (2019). Tuna 

robotics: A high-frequency experimental platform exploring the performance space of 

swimming fishes. In Sci. Robot (Vol. 4). https://doi.org/10.1126/scirobotics.aax4615  

 Zion, B. (2012). The use of computer vision technologies in aquaculture - A review. Computers 

and Electronics in Agriculture, 88, 125–132. https://doi.org/10.1016/j.compag.2012.07.010  

 Zion, B., Shklyar, A., & Karplus, I. (1999). Sorting fish by computer vision. Computers and 

Electronics in Agriculture, 23(3), 175–187. https://doi.org/10.1016/S0168-1699(99)00030-7  

 Zion, B., Shklyar, A., & Karplus, I. (2000). In-vivo fish sorting by computer vision. Aquacultural 

Engineering, 22(3), 165–179. https://doi.org/10.1016/S0144-8609(99)00037-0  

 

 

https://doi.org/10.3390/w15112129
https://doi.org/10.1109/PIC.2010.5687462
https://doi.org/10.1016/j.compag.2018.02.006
https://doi.org/10.1126/scirobotics.aax4615
https://doi.org/10.1016/j.compag.2012.07.010
https://doi.org/10.1016/S0168-1699(99)00030-7
https://doi.org/10.1016/S0144-8609(99)00037-0


 

73 of 76 

4.2. Survey results 

ID Country Species Type of Farm Environment 2a 2b 2c 2d 2e 3a 4a 4b 4c 4d 4e 5a 5b 5c 5d 6a 6b 6c 6d 6e 7a 

1 France 
Mussels;Oysters; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 4 1 3 1 2 1 1 1 1 1 1 2 1 1 1 1  1 1 1 1 

2 France 
Mussels; Oysters; 

Clams 

Molluscs on the bottom; Molluscs on 

suspension (Longlines, raft, batea…); 

Raised molluscs (in a container or 

tables with bags) 

Marine; 2 5 2 5 2 3 5 5 5 5 4 4 5 5 5 5 3 5 5 5 4 

3 France 
Mussels; Oysters; 

Clams; Other 

Molluscs on suspension (Longlines, raft, 

batea…); Molluscs on the bottom; 

Raised molluscs (in a container or 

tables with bags); Système ouvert; 

Marine; 

Brackish; 
3 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 

4 Greece 
Sea Bass; Sea 

Bream 
Sea cages Marine; 2 5 1 5 5 2 1 3 5 5 5 5 5 5 5 5 5 5 5 5 4 

5 Greece 
Sea Bass; Sea 

Bream; Meagre 
Sea cages Marine; 5 4 1 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 

6 Italy Mussels 
Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 

7 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 2 4 2 2 2 2 1 1 3 2 2 1 1 2 1  1 1 1 1 

8 Italy Mussels 
Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 3 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3  3 3 3 5 

9 Italy Mussels 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 

10 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 3 1 1 4 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 

11 Italy 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 1 3 5 3 5 5 5 3 5 3 3 5 5 5 5 5 5 5 5 4 

12 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 1 2 2 1 4 3 4 4 4 4 3 3 3 3 3 3 3 3 3 3 

13 Italy Mussels 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 

14 Italy 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 5 5 1 2 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 

15 Italy 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 5 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 
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ID Country Species Type of Farm Environment 2a 2b 2c 2d 2e 3a 4a 4b 4c 4d 4e 5a 5b 5c 5d 6a 6b 6c 6d 6e 7a 

16 Italy 

Sea Bass; Sea 

Bream; Mussels; 

Oysters; Clams 

RAS Marine; 3 5 4 4 3 1 5 4 1 1 1 4 4 2 5 1 1 1 3 1 5 

17 Italy Mussels; Oysters 
Molluscs on suspension (Longlines, raft, 

batea…); Molluscs on the bottom 
Marine; 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 

18 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 2 2 2 5 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

19 Italy Mussels  
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 Italy Eel; Other 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

21 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 3 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 

22 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

23 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 1 1 4 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

24 Italy Rainbow Trout Other Freshwater; 3 3 3 3 3 3 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 

25 Italy Mussels; Oysters 

Molluscs on suspension (Longlines, raft, 

batea…); Raised molluscs (in a 

container or tables with bags)  

Marine; 1 1 1 1 3 1 1 3 3 3 2 2 2 3 2 3 2 2 3 3 2 

26 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

27 Italy 
Mussels; Oysters; 

Clams 
RAS Marine; 3 4 4 2 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

28 Italy Mussels 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 5 5 5 5 5 5 2 5 2 2 2 5 3 3 3 2 5 5 3 2 5 

29 Italy Rainbow Trout Other Freshwater; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 Italy Mussels 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

31 Italy 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

32 Italy Oysters; Clams 

Molluscs on suspension (Longlines, raft, 

batea…); Raised molluscs (in a 

container or tables with bags); Open 

system (raceways, flow-through tanks, 

ponds...) 

Marine; 

Brackish; 
5 4 5 5 5 3 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 
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ID Country Species Type of Farm Environment 2a 2b 2c 2d 2e 3a 4a 4b 4c 4d 4e 5a 5b 5c 5d 6a 6b 6c 6d 6e 7a 

33 Italy Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

34 Italy Other 
Open system (raceways, flow-through 

tanks, ponds...) 
Brackish 1 1 1 2 2 3 3 3 3 3 3 2 5 5 4 5 5 5 5 5 4 

35 Italy Mussels; Oysters 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

36 Portugal 
Sea Bass; Sea 

Bream 

Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

37 Portugal Clams 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 

38 Portugal Oysters 
Raised molluscs (in a container or 

tables with bags) 
Brackish 1 2 5 1 2 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 

39 Portugal 

Sea Bass; Sea 

Bream; Oysters; 

Clams 

Open system (raceways, flow-through 

tanks, ponds...); Raised molluscs (in a 

container or tables with bags) 

Brackish 4 4 2 4 3 5 5 5 5 5 5 2 2 4 3 5 5 5 5 5 5 

40 Portugal Oysters 
Raised molluscs (in a container or 

tables with bags) 
Brackish 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

41 Portugal Tuna Sea cages Marine; 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 

42 Portugal Oysters 
Raised molluscs (in a container or 

tables with bags) 
Marine; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

43 Portugal Oysters 

Molluscs on suspension (Longlines, raft, 

batea…); Raised molluscs (in a 

container or tables with bags) 

Marine; 

Brackish; 
1 3 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 

44 Portugal 
Sea Bass; Sea 

Bream 

Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 3 3 3 3 3 1 3 3 2 2 2 1 1 1 1 1 3 1 1 1 1 

45 Portugal 
Sea Bass; Sea 

Bream 

Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 1 1 1 5 1 3 4 5 5 5 5 4 5 5 3 5 5 5 5 5 5 

46 Portugal Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 5 5 5 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 5 

47 Spain Tuna RAS Marine; 1 1 2 2 2 5 2 4 3 1 2 3 4 4 4 4 4 4 4 4 4 

48 Spain 
Sea Bass; Sea 

Bream 

Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 2 2 4 5 3 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 3 

49 Spain Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 4 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

50 Spain Rainbow Trout 
RAS; Open system (raceways, flow-

through tanks, ponds...) 
Freshwater; 4 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 

51 Spain 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 1 2 2 3 1 4 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 
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52 Spain Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 3 2 2 5 2 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 

53 Spain 
rainbow Trout; 

Other 

Open system (raceways, flow-through 

tanks, ponds...) 
Freshwater; 4 3 3 1 4 1 5 1 1 3 1 4 1 1 1 1 1 1 1 1 1 

54 Spain 
Sea Bass; Sea 

Bream; Meagre 
Sea cages Marine; 2 2 3 5 5 2 1 1 5 5 5 4 5 5 4 5 5 5 5 5 3 

55 Spain Sea Bass RAS Marine; 1 2 1 4 3 5 1 4 5 5 5 5 5 5 4 4 5 5 5 5 4 

56 Spain Eel RAS Freshwater; 1 1 1 1 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 2 

57 Spain Turbot 
Open system (raceways, flow-through 

tanks, ponds...) 
Marine; 1 1 1 5 2 5 5 5 5 4 3 2 5 4 3 5 5 5 5 5 1 

58 Spain 
Sea Bass; Sea 

Bream 
Sea cages Marine; 1 1 1 4 4 1 1 1 4 5 5 4 5 5 3 5 5 5 5 5 2 

59 Spain Mussels 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 

60 Spain oysters 
Molluscs on suspension (Longlines, raft, 

batea…) 
Marine; 5 5 2 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

61 Turkey 
Sea Bass; 

Rainbow Trout 
Sea cages 

Marine; 

Freshwater 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

62 Turkey Rainbow Trout Sea cages 
Marine; 

Freshwater 
5 5 2 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 

63 Turkey Rainbow Trout RAS; Sea cages Freshwater 5 5 5 5 5 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 3 

64 Turkey Rainbow Trout Sea cages 
Marine; 

Freshwater 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 

65 Turkey Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...); Sea cages 
Freshwater 4 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

66 Turkey 

Sea Bass; Sea 

Bream; Rainbow 

Trout; Mussels; 

Other 

Open system (raceways, flow-through 

tanks, ponds...); Sea cages 

Freshwater; 

Brackish 
2 2 2 4 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 2 

67 Turkey 

Sea Bass; Sea 

Bream; Rainbow 

Trout; Mussels 

Open system (raceways, flow-through 

tanks, ponds...); Sea cages 

Marine; 

Freshwater 
4 5 5 5 5 4 3 3 4 5 5 5 5 5 5 5 5 5 5 5 3 

68 Turkey Rainbow Trout 
Open system (raceways, flow-through 

tanks, ponds...); Sea cages 
Freshwater 4 5 5 5 5 5 3 5 5 5 5 1 5 5 5 5 5 5 5 5 5 

69 Turkey Rainbow Trout Sea cages Freshwater 4 5 5 5 5 5 3 5 5 5 5 1 5 5 5 5 5 5 5 5 5 

 


